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GLOSSARY 

AO, Atomic Orbitals. One-electron functions whose square is the density of an electron in 

centred on an atom. 

CAS, Complete Active Space. A method to simultaneously optimise MOs and CI coeffcients 

of CSFs (or determinants) built upon these MOs. All occupations within a chosen space are 

considered (with the possible restriction imposed by synmietry). 

CI, Configurational Interaction. Wavefunction composed of Slater determinants. 

CSF, Conflgurational State Function. Spin-adapted (i.e. eigenfunction of S operator) linear 

combination of Slater determinants. 

Discoincidence, a pair of Slater determinants that differ by one orbital (in each determinant). 

This orbital is said to be discoincident. 

FOCI, First Order CI. Wavefunction composed of all single excitations from CAS into 

virtual space. 

Hermiticity, Hermitian character of an operator. 

Integral convention: physical, same as scalar product: <ab|A|cd>=a^b^Acd. 

Irrep, irreducible representation. 

LCAO, Linear Combination of Atomic Orbitals. A generally used approach of expanding 

MOs in terms of linear combinations of AOs. 

MO, Molecular Orbitals. One-electron functions whose square is the density of an electron in 

a molecule. 

Scalar product convention: physical or Dirac <a|b>=a^. 

SCF, Self Consistent Field Approach. The backbone of a very large class of modem quantum 

chemistry methods. 
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SOCI, Second Order CI. Wavefunction composed of all single and double excitations from 

CAS into the virtual space. 

SOC, Spin-Orbit Coupling. A diabatic relativistic interaction of angular and spin momenta. 

SOCC, Spin-Orbit Coupling Constant. Determines the magnitude of SOC between a pair of 

states. 
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ABSTRACT 

Theoretical models to study spin-obit coupling with multi-configurational 

wavefunctions have been developed both methodologically and implemented into the widely 

distributed quantum chemistry package GAMESS. Various aspects of making the spin-orbit 

coupling studies more efficient and thus more available, such as extensive usage of symmetry 

and parallelisation have been studied. A theoretical development of one, two and partial two 

electron approaches to spin-orbit coupling is given and tested on a representative set of 

molecules. A new accurate method to study the vibrational structure of molecules, limited in 

the current formulation to diatomics, has been proposed. Two chemically interesting systems 

have been studied, the reaction path of titanium cation and ethane, and the vibrational 

structure of CO"^ and O,*. 



www.manaraa.com

1 

CHAPTER 1. GENERAL INTRODUCTION 

1. Introduction 

One of the key ideas in the scientific approach of theoretical understanding of the 

natural phenomena is the art of making approximations. One can derive beautiful and 

completely general equations describing nature in its totality, however, it is perfectly clear 

that any Hnite expression represents a fmite part of the infinite complexity of the natural 

phenomena. The general equations lack the ability to describe the phenomena exactly. Still, 

even the limited form of scientiHc wisdom expressed in many beautiful equations does not 

permit a general and exact solution to these equations to be found. One of the key wheels 

perpetuating scientific thought is the ability to make and break approximations. An 

approximation is only a first step intending to probe the bulk of the interaction. The second 

step necessarily is the understanding of under what conditions this approximation is 

applicable and what are the forces representing the breakdown of the approximation. Only 

then can one confidently use the approximation and break it when deemed important. 

One of the pivotal approximations currently established in quantum chemistry is the 

adiabatic approximation that proved to be the fundamental step in the quantum theory 

permitting the transition from study of atomic structure into molecular studies. The basis of 

this approximation is the difference by a factor of 1837 in masses of electron and proton. 

This effectively establishes the independence of electronic and nuclear movement. This 

approximation proved to work exceptionally well, so that the majority of chemical 

phenomena can be described with sufficient accuracy. However, there are classes of 

chemical phenomena that do violate the approximation. They include photodissociation', 

charge transfer and in fact all chemical phenomena become increasingly affected by 
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relativistic effects as the atomic weight becomes heavier. These relativistic effects can be 

separated into scalar and spin-mixing part?". The latter can be further separated into spin-spin 

and spin-orbit coupling parts and both belong to the realm of the interactions breaking the 

adiabatic approximation. Other important classes include Renner-Teller^ and Jahn-Teller"' 

effects. 

This work will be concerned with the spin-orbit coupling interaction that can be 

derived as an approximation to the Dirac equation,, when one reduces the four-component 

Dirac equation into a two and then one component equation having the form of a Schrodinger 

equation with extra terms one of which represents the spin-orbit coupling^. 

An effect of spin-orbit coupling on adiabatic levels can be illustrated with the 

example of a *0 state of a linear molecule, as discussed in detail below (CO*). An adiabatic 

spin-free calculation produces two degenerate energy levels, usually denoted by n, and 

ny(ML=±l). A doublet has two spin components, Mj=±l/2. Thus, there are four adiabatic 

levels. The diabatic coupling (SOC) lifts this four-fold degeneracy and produces two doubly 

degenerate levels, according to the angular momentum addition rule, since Mj=Ml+Ms is a 

good quantum number (J. commutes with the Hamiltonian) and one gets four values of 

Mj=±l/2 and ±3/2. The Mj levels equal in absolute values and different by the sign represent 

the Kramer's time-reversal degeneracy® and are degenerate in energy. The coupling of levels 

is illustrated below: 

En, 

^ 

Some of the matrix elements are zero by synmietry. In the case of linear molecules 

and n terms, only the following must be calculated; 

0 
0 En 
0 0 
0 0 

0 0 ' 

0 0 

0 

0 
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0 A 0 " 

0 En 0 -A 
A' 0 0 

0 —a' 0 En 
' -

The eigenvalues of the matrix are two doubly degenerate values: E^=En±|A|. 

An important thing to notice here is the spin-orbit coupling splitting, defined as E+-E.; 

although it appears as a difference, in fact it is equal to 2|A|. Similarly, the spin-orbit 

coupling constant is defined as a sum of squares of matrix elements. Thus the spin-orbit 

coupling effects are fundamentally absolute in nature, that is they are not relative to 

something, with a sharp contrast to energy which is only defined up to a constant. This has a 

deep and profound effect upon practical finite precision calculations: energy requires high 

quality basis sets and large CI expansions in order to accurately describe energy splitting, 

whereas spin-orbit coupling itself as a correction does not require such computationally 

demanding resources. 

So in this case the symmetry analysis allows one to reduce the amount of work 

required to one matrix element. This exemplifies the usefulness of a thorough synmietry 

analysis. 

The eigenvalues of this Hjo matrix represent the diabatic energy levels and the 

splitting between them (absent at the adiabatic level of theory). Although these effects are 

small (for light elements) they are large enough to be seen experimentally. 

2. Dissertation Organisation 

and = 

In Chapter II the existing and developed general approaches to calculating spin-orbit 

coupling interactions for molecules are given. In Chapter m a systematic study of the affects 

and uses of synunetry for spin-orbit coupling is conducted. In Chapters IV and V the 
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developed ability to conduct the study of spin-orbit coupling is further applied to the practical 

work directly linked to the chemical phenomena. Applications of spin-orbit coupling are 

given in Chapters VI and Vn. The general conclusions are drawn in Chapter Vlll. 

Chapters I and Vin contain the introduction and conclusions, respectively. Chapters 

n, in, VI and vn are to submitted to journals. Chapters IV and V contain supplementary 

material used throughout the dissertation. 

References 

' J. Michl and V. Bonacic-Koutecky, Electronic aspects of organic photochemistry (Wiley, 
New York, 1990) 

- K. Dyall, J. Chem. Phys, 100,2118 (1994) 

^ C. Jungen and A.J. Merer In Modem Spectroscopy; Modem research; Ed. by K.N. Rao 
(Academic, New York, 1976) 

* I. B. Bersuker, The Jahn-Teller effect; a bibliographic review (Plenum, New York, 1984) 

' H. A. Bethe, E. E. Salpeter, Quantum Mechanics of the one and two electron atoms 
(Plenum, New York, 1977). 

® D.M.Brink and G.R.Satchler Angular Momentum (Charedon Press, Oxford, 1968) 
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CHAPTER n. A STUDY OF THE RELATIVE IMPORTANCE OF ONE 

AND TWO ELECTRON CONTRIBUTIONS TO SPIN-ORBIT COUPLING 

A paper to be submitted to J. Chem.. Phys. 

Dmitri G. Fedorov, Mark S. Gordon 

Abstract 

The existing methods to estimate the magnitude of spin-orbit coupling for arbitrary 

molecules and multi-configurational wavefunctions are reviewed. The form-factor method is 

extended from the original singlet-triplet formulation into arbitrary multiplicities. A 

simpliHed version of the mean-Held method is formulated and tested versus the full two-

electron operator on a set of representative molecules. The change of the one and two 

electron spin-orbit coupling down the Periodic Table is investigated. 

1. Introduction 

As computational capabilities improve, the ability to do more accurate calculations 

and study finer features of molecular structure is facilitated. One of the features that has 

begun to be widely studied relatively recently for molecules rather than atoms is spin-orbit 

coupling (SOC). It is one of several interactions violating the commonly used adiabatic 

approximation and as such, it provides valuable information about dynamics of processes 

otherwise forbidden (such as transitions at energy surface crossings). As a consequence of 
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relativistic effects, as can be seen directly from the reduction of the full relativistic Dirac 

equation, it provides a perturbative correction to the energy levels, generally growing with 

the nuclear charge. Whereas the general theoretical aspects of spin-orbit coupling have been 

known for a long time, there has been a lack of generally available tools with which it can be 

calculated. 

In this work a general hierarchy of spin-orbit coupling methods is described. These 

methods have been developed and implemented into the electronic structure code 

GAMESS'. An approximate one-electron method developed by Koseki in GAMESS was 

previously described for both main group^ and transition elements^ Veseth"* and Ross et al ^ 

studied spin-orbit coupling for a number of atoms. Although full two-electron Pauli-Breit 

SOC calculations (vide infra) have been done by many researchers®'^ '®, their codes have not 

been generally available. As a result of the present work general SOC calculations can now 

be performed with GAMESS, as described below. Several advances in calculation methods 

have been made. The code is fully capable of running in parallel with TCGMSG* and MPI' 

libraries. 

2. General description of the methods 

The Pauli-Breit spin-orbit coupling operator is given by : 

H , =  
i=l a=l I'/ ~ 'Jrl i=l j*i Yi~'^i\ 

(1) 

where: 

Q is the fine structure constant, 

ZQ are the nuclear charges, 

r^ and r^ are the electron and nuclear coordinates respectively. 
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Pi is the electron momentum operator, 

A 
5, is the electron spin operator. 

The first double sum is known as the one and the second as the two-electron SOC 

operators. The computational expenses of SOC calculations are considerably different (by 

one order of magnitude) for one and two electron operators. In addition, due to the local 

nature of the operator and the explicit dependence of the one-electron operator upon the 

nuclear charges, the one-electron contribution to SOC tends to grow rapidly with the nuclear 

charge, whereas the two-electron part grows much more slowly, due to increased electron 

density in the regions close to the nuclei. This has motivated the development of several 

approaches wherein the complexity grows from just one-electron(lE) to the full one and two 

electron (2E) operators through an intermediate partial two-electron contribution method 

(P2E). 

The following quantity based upon the Fermi Golden Rule is useful for the 

description of the dynamics of SOC-induced transitions (such as reaction dynamics). 

S' 
25 + 1 

(2) 

(s|2|sf 
3 

(Dirac notation is used throughout, £ denotes the molecular angular momentum operator, 

defined below). This quantity is hence called the SOC constant (SOCC). Note that S' is either 

equal to S or to S+1, so there is no real asynmietry in the formula. More details are given 

below. 

Since the many modem quantum-chemical methods are based upon Slater 

determinants, with the total wavefunction being a linear combination thereof, the methods 

below are based on calculation of spin-orbit coupling matrix elements between two 

determinants. Spin-adapted linear combinations of determinants are known as CSFs. Two 
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different approaches can be taken. Given the total wavefunction and an operator A, consider 

(filAlf,): 

• Direct approach i\^) = ^C,iJ, The individual matrix elements between two 
/ 

determinants or CSFs ^Z>,|A|Dy^ are calculated one by one using the Slater rules, which 

reduce a matrix element to a sum of MO integrals. 

• Indirect approach = 7>[AP] = 2A; P j j  or ^AjktPikji for 1 and 2 electron 
i.j ijkt 

operators. Here, can be a single determinant, a CSF or their linear combination, A are 

integrals in the basis of MOs (i.e. A^j = ) and P is the generalised density. 

The advantage of the indirect method is that it does not require storing of the 2e 

integrals usually kept in memory in the direct method. The penalty for this advantage is 

having to calculate, sort and store the form-factors (vide infra), from which the generalised 

density is calculated. This effectively restricts the practical applicability of the indirect 

approach to the complete active space (CAS) type of wavefunction. Thus, the indirect 

method is best used with small active spaces and large basis sets, whereas the direct approach 

may not be able to handle large basis sets due to limited computer memory. 

An intermediate method also exists, known as the symbolic matrix element method, 

wherein the CSFs are divided into classes according to occupation schemes, and each scheme 

is then treated with the indirect approach . While found to work well, this method is not 

considered below as its practical implementation requires an appropriate underlying 

configurational interaction (CI) scheme currently not available in GAMESS. The foregoing 

discussion is summarised in Table 1. 

Except for computation of the full le and 2e matrix elements, the indirect approach is 

at a disadvantage compared with the direct method, so it has not been implemented for the 
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other approaches. The indirect one and two-electron operator approach requires 

exponentially growing resources as the number of active orbitals (i.e., all variably occupied 

orbitals) increases, so the actual implementation is still limited to 26 active orbitals at most 

(denoted by * in Table 1). 

Table 1. Sunmiary of SOC code development in GAMESS. 

In GAMESS originally In GAMESS after this work 

IE P2E 2E IE P2E 2E 

direct general none none general general general 

indirect none none limited none none general(*) 

Throughout this work, it is assumed that the two sets of molecular orbitals (MOs) (the 

sets for bra and ket) are biorthogonal with identical core (doubly occupied space in all 

configurations). It is only possible to biorthogonalise MO sets for a pair of multiplicities in 

the CAS case"(or Full CI, FCI). In all other cases identical MO sets have to be used to avoid 

having to deal with non-orthogonal orbitals. In principle, it is possible to work with non-

orthogonal orbitals'^ with the computational expense increased by an order of magnitude. 

Then a one-electron SOC non-orthogonal calculation would cost as much as a two-electron 

one with orthogonal orbitals. 

3. Symmetry Summary 

By application of the Wigner-Eckart theorem'^ and by using the hermiticity of it 

is possible to reduce the number of matrix elements to be calculated from (2S+I)(2S'+1) 



www.manaraa.com

10 

where S and S' are the bra and ket eigenvalues, to at most two''*. Application of symmetry 

selection rules can further reduce this number. It has been found that the double group does 

not offer any advantage over the point group forma!ism'^ if the matrix elements are 

calculated in the real-valued CI state basis. The matrix elements reduce to; 

(anSM, H,^aTrS'M,')= i iS\l,M:-q\SMMans\t^aTrS')i-ir 
\ ' ,=-1 \ I / 

where a, F and i are the symmetry labels of the CI states and (S',l,Ms',q|S,M,) is a 

Clebsch-Gordan coefficient. (aBS^L^SlaTTS'^ is a so called reduced matrix element 

(RME), with the property that RME(q=l) and RME(q=-l) are connected by a simple relation, 

so that only two need to be explicitly calculated (e.g., q=0 and q=l). An important 

consequence of this formula is that for a pair of states (e.g., determinants) only one q in the 

above sum survives, namely q=M,'-Mj. 

The point group selection rules are deduced from the product F x T j .  x F '  o f  the 

irreducible representations, to which bra, angular momentum and ket belong. Matiix 

elements between two singlets and for bra equal to ket (real-valued states) are zero. 

It is worth keeping in mind that usually the CI states are not pure synmietry-wise, i.e. 

they belong to several irreducible representations with different weights, so the point group 

symmetry rules hold only approximately if a state is assumed to belong to only one of them. 

Integral index permutational symmetry is discussed below when the integrals are 

defined for the indirect method. 

4. Indirect Method 

Furlani derived and coded a limited version of this method as a part of his PhD 

thesis". The method itself was derived for singlet and triplet states only. The code was 



www.manaraa.com

11 

limited to 10 active orbitals and up to d-functions. 

Close examination of the derivations reveals that for the general case of arbitrary 

multiplicities the following holds for <SM,| (S'Mj'>: 

• the matrix element is zero if |S-S'j>l or |Mj-M,'|>l 

• if then the formulae for singlet and triplet M,=0 can be used to calculate such a 

matrix element 

• if Mj'-M,= ±1, the formulae for singlet and triplet Ms=±l are to be used. 

A brief review of the generalised method is now given. is taken to be a linear combination 

of CSFs with coefficients q, each of which is a linear combination of Slater determinants A 

with coefficients C. 

/ ,1 V  / I I I  

/> t  Jm\ KmI Lml 

X im\ * ' ' U«U>1 m«i 

(4) Jis. , 1 . . JL JL / , . N. 
9/9/• 

where /,„ is what is left of the one and two electron spin-orbit coupling operators after taking 

the scalar product over the spin variables, k(L) denotes an orbital with ordinal number k in a 

determinant L. N is the total number of doubly occupied core (NJ and active(NJ orbitals, 

N=2Nj+Nj, Nj is the number of electrons in the active space, AMj=Mj'-Mj(|AM, |<1). 

The quantities F" and are known as the one and two-electron form-factors (FFs) 

(both are AM, dependent), and F^^' and Fj^' are the one and two-electron generalised 

density, respectively: 

^CSF ^CSF ^CSF ^CSF 

/=i y=i /=i y=i 
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The FFs are derived from application of the Slater rules to pairs of determinants 

and A, and comparison of the left and right hand sides. 

The main properties of the form-factors are: 

1. r" and are dependent only upon and N, and are sparse. 

2. r" are zero unless both i and j are in the active space 

3. are zero unless (i) all indices are in the active space or (ii) two indices are from the 

core and two from the active space (of which there are four combinations). In the latter 

case they are independent of the core indices' and are proptional to F". 

The MOs (p are taken as linear combination of atomic orbitals (AO) x. and by using the index 

permutational symmetry the final result for the matrix element in Eq. (4) is: 

/ It \ / , It "AO '^AO f » ^ I tM. V 

ysl pm\ a«l vm{ pmXfXmX 

^AO ^AO V 

where and 

^ ^ 2;'^(l), 
a 

4'>.sa™(o, 

Note that for atoms , where is the total electronic angular momentum. 

^yp S '^#9 ' ^ ^ ^ ' °yvpii ^iju ^ri S V 

^ = -^[4D;D; + 3DJ,D^ + 3D;D;, + 3C;D^ +3/^0^ + 8^+^-8,^-8^] (8) 

(following Furlani's convention with a few extra definitions for use below). 

' Note: this is analogous to the direct method: these core-active form-factors correspond to the partial two-electron direct 
method considered below. 
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The c are MO-^AO expansion coefficients for the active orbitals; c without 

superscript refers to the ooie orbitals (assumed to be independent of M,). The superscripts "c" 

and "a" refers to core and active, respectively. Rapidly growing computational expenses can 

be seen in Table 2. 

Table 2. The rapidly growing number of FFs. 

CAS [m/n] # singlet CSFs # triplet CSFs #leFFs #2eFFs FF disk, bytes 

[2/2] 3 1 8 16 192 

[4/4] 20 15 320 2,896 76,800 

[6/6] 175 51 3368 78,810 6,693,488 

[8/8] 1764 2352 294370 12,282,038 232,448,352 

[10/10] 19074 29700 8214402 536,127,134 4,656,497,344 

[m/n] denotes m electrons in n orbitals. 

It should be noted that the FFs are first generated and then sorted by MO indices. The 

number of FFs for a given set of MO indices is not known a priori, but the code has to 

allocate space before the generation starts. This can be done in two ways. One is to allocate a 

sufficiently large amount of space, however this increases the size of the disk file. Another 

option is to first generate the form factors and save the number of form factors for each set of 

indices while not saving the FFs themselves. Then the proper space is allocated and during 

the second run the FFs are actually generated and sorted. In Table 2 the last line ([10/10]) 

shows the disk space associated with the second (disk saving) option; all other lines reflect 

the fixed space option. 
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5. Direct methods 

a) Introductory definitions 

Similarly to the indirect case(Eq. 4), 

/ I A I \ ĉsF '̂csr "oCT A'DCT . , I . ( f f ( s ' . M ; )  =  E  2  2  2  cMAMA-A ( 9 )  
/=i y=i *=1 L=i 

The Slater rules are now applied dynamically, for each pair of determinants. While there may 

be a very large number of them, it has to be recognised that for large CI expansions many 

products of CSF coefficients will be very small in magnitude. Keeping in mind that these 

coefficients themselves are obtained with finite precision, one is justified in omitting 

contributions from such very small coefficients. This is achieved via introduction of a 

threshold value; the details are given below. 

First, consider the basic schematic equation: 

+ (10) 

(^I'on-con + ^are-act + ^lore-con zcro US shown below). The three indirect methods can be 

defined as follows; 

One-electron method: | ~ 

Partial two-electron method: |4') = 

Two-electron method: (a\h,^ | A') = 

It is shown below that H^ore-aa becomes pseudo-one-electron after summing over the 

core. The exact algebraic definitions of all of these quantities are given below. The one-

electron method is usually implemented by introducing semi-empirical parameters (charges). 
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Zeff» in order to make up for the neglect of the two-electron terms. It is shown below that the 

partial two-electron method provides reasonable accuracy without the need for fitted 

parameters. 

Recall the Slater rules for a pair of determinants. First, the spin-orbitals in the second 

determinant are reordered in such a way as to put them in the same order as the first 

determinant, with different (discoincident) orbitals being placed at the end. The number of 

these discoincident orbitals needs to be less than or equal to the number of coupled particles 

in the operator (i.e., one or two), for a matrix element to be non-zero. For the partial two-

electron method (P2E) the number of discoincidences should be less than or equal to one, 

because two discoincidences can only come from two active orbitals and this term is omitted 

in the P2E method. The cases for 0,1, and 2 discoincidences are given below (note that only 

one spin-discoincidence is allowed, as the spin operators couple only one electron): 

1^) = I - {w^w\hi - {VyW\hl, 

1 )̂ = \ V a V p )  - {v^V.\hl\Kv'p) - {v.vjfti l'/>;)]o,v 

tf. ^' / I \ 
Orbital overlaps do not include core overlaps 

equal to one. By convention, the Greek indices are used for molecular spin-orbitals \(r=(pa 

and Roman indices for molecular orbitals (p. Greek indices are also used for atomic orbitals. 

and A" denote determinants different by one spin-orbital (v and a). 

It is worth remembering that SOC between two identical states is zero by hermiticity, 

therefore in case of orthogonal (rather than biorthogonal) orbitals for bra and ket states the 

case of zero discoincidence need not be concerned with because the contribution vanishes by 

symmetry. 
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b) Spin summation 

From the symmetry rules it is seen that only one specific q survives from the sum 

(Eq. 3), i.e., where qsMj'-M, for a matrix element <SM,| ̂ „|S'M,'>. Each spin-

orbital (with a Greek index) is now written as a product of an orbital times the spin function 

a (a or P), and the summation index is changed to Roman to signify this. It is then possible to 

take scalar products over the spin variables. The equations are simplified considerably, 

especially for the core orbitals. 

The following elementary form-factors are introduced as matrix elements of spin-

operators in the spin-function basis (G; denotes the spin part of i-th orbital). These elementary 

form-factors are similar to the form-factors f introduced for the indirect method except that 

they effectively connect two determinants rather than CSFs and y are unsorted, 

(12) 
Y^- = (ff,(l)a/2)|{f(l) + 2si2)l^ |<T,(l)a,(2)) = = rT'S, + 

They are straightforward to calculate, e.g. 

rl,={a\l\a) = lll 

r'aeaa ^ (a(l)i8(2)|5_(l) + 2f_(2)|a(l)a(2)) = {a\s.\a){P\a) + 2{a\a){p\s. |a) = 0 -h 2 = 2 

There are only 16 of these for each AM,, for AM,=0, see Table 3. 

Consider the one-electron case for zero discoincidence. AM, is 0 in this case, so 

rL=-C=l/2and 

HL-core = ] 
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Table 3. Complete ylvpa table. 

|aa> |ap> IPco m> 

<aa| 3/2 1/2 1 0 

<ap| 1/2 -1/2 0 -1 

<Pa| 1 0 1/2 -1/2 

Q
C

L 
C

O
. 

V
 0 -1 -1/2 -3/2 

Thus, any doubly-occupied orbital (including ail core orbitals) does not contribute to 

the one-electron spin-orbit coupling term. Similarly, the two-electron core-core contribution 

vanishes. - 0 because overlaps between core and active orbitals <(Pc|(Pa>=0. 

The following integral quantities are introduced: 

A; = Ajkl = 

\(Pc(Pj)^ Ar= \(pj^c) (14) 
C=1 

nr 
c=l 

C=1 C=I 

The superscripts c and a refer to core and active spaces, respectively. 

Symmetry properties of the integrals are: 

Aj=-Aj, 

Afja ~ ~Aiqa A;« ~ Aiy 

(i.e. antisymmetric and symmetric for the first and second particle, respectively). This 

property holds for core integrals, too, so = 0. 

(15) 
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In the code, operators (defined as in the indirect case) are written as 

(A ^ \ A A A 

± 1 / V2, and the program actually calculates matrix elements of -i -i £y and -i £, 

operators (multiplied by imaginary unity i to get real-valued integrals, as l=[r x p] and p=-i7. 

Note that V is antihermitian, whereas p is Hermitian). Subsequently, are reconstructed. 

It is possible to rewrite the matrix elements as: 

(^»«.h)=SA,rr-o,+2^ 
1=1 1=1 1=1 

n. 

1 i.;=l 

{^\H„\A) = A,r^'0,+ o, 

n. 

Arfr™' + C' ]+Ar[r,^r^ + ] -

+ 2[Af.jl'r• + \fym' -\fy»' -K 

Ar[C' + C]+] -• 

Acaacl^AM, .^M,\_Aacca\^M, 
[/ cgia ^ I ^tp \ jaal ^ ! jPPt \ 

+ £K/y,^' +^uiym' 
1=1 

^JilkYjilk' ~AjlkYijUc' ~ ̂ jiklYjiu'Y^ij 

Note that a factor of 2 appears because of symmetry in sums: 

N, N, N. N, N. N. 
SS -SE =2SS 
1=1 y'=l 1=1 ;=1 1=1 y=l i=l j=\ 

With a little algebra it can be seen that: 

V 4- V = 4 V 1 CBCJ ' pifa I ij 

/ ic^a ^ f ifyfi ij 

/ ay a ^ f fijp ij 

m, .y^s 
f iao^ ^ r ififn " ij 

(16) 

(17) 

Thus the expressions for the matrix elements are simplified to (using = 0): 
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(4)h„|4) = S{A,r,r-o,+2(/ir2)',fo, -ATiy^'O, -Ar^rr-o,)} 
I'sl 

+ -"^JWrMpU 
ij=l 

(4'|H„|4f)=A,r^-o,+A^irf'O, - Af^irT'O, - A^-iy^'O, (is) 

+EK«i'.? + ̂ MyS' - A»i''p • - ajmy"' pi, 
1=1 

^JilkYjilk' ~ AjIkYijik' ~ ̂ JiuYJiu']0ij 

and finally one arrives at the final formulae; 

N. , S. 
(4|A„U) = + lA^y^'O,} + X[A,jijY^' + Ajy^Ym' "^jnYm' "^j'UYM'Pv 

1=1 i.;=i 

{^\H„\^) = Aj,Y^'Oj+A^y^-Oj+^[A,j,YS:'' +A;,rf "Ay«y,^' -AjuiYm'Pu 
i=l 

(^"|^jo|^ ^~[AjuYiju' ^jilkY jUk ~ AjtkYijIk' ~ ^jiklY jikl'pij 

where A^" = - 3A^'^ - SA^"" 

Now it can be seen that the core-active two-electron contribution may be formally expressed 

in exactly the same fashion as one-electron active-active term. 

1=1 

«i-„=2EAr)'ro, (20) 
1=1 

H-' = V U v^' +A v^- - A v'^' - A v^'lo '•'•aa-aa ^ ijij M' jij' ^JJ'' 'ii' Ji'J' J'U J V 
ij=l 

for zero discoincidence and similarly for one and two discoincidences. 
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c) SOC integrals 

The atomic integrals are calculated by the integral code developed by Furlani'® for his 

form factor method (in the AO basis). The code has been slightly modified to allow up to g-

type orbitals in the basis set. 

The usage of AO integrals is different between direct and indirect methods. The 

indirect method is AO-integral based, i.e. each integral is multiplied by the density and added 

to the matrix element being calculated. The direct methods store the AO integrals on disk: the 

one-electron integrals are stored as a triangular matrix and the non-zero two-electron 

integrals are stored as an integral list, with orbital labels. 

Transformation into the MO basis is accomplished for active orbitals in the standard 

way by doing two and four index transformations. 

where c^j are LCAO coefficients. The core-active transformations are reduced from four to 

two indices by doing the core summation: 

(21) 

fiypc 

A" = 2/4,p - 34"^ - SAf" 

=\ p ' j f p c ) - < p ' j < p c ) - kc<p;) 
C=l C=1 C=1 ' 

N. ^ ^ . . . . 1/ 
~ ^ ~ pc^aj\\xnx'}^M, xpx<^ 

c=l fivpa * ' 

acca 

lir'yKrpc^aj 
(22) 

nvpa 

where the sum over the core yielded the core density, D'. 
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• • fvj • • t%\j ' • nu ' • Au 

Ar = -3S^v« = ScX"4 (23) 
ftp vp fUT kX 

using the following notation: 

I^AO 
AOcac wye A Acaac = r)C A A""" = ̂  D' A 

va fi<T vp (24) 

A^^2A^--3A^-3A^-

Thus three four-index transformations are converted into three (to contract the core density) 

plus one (to contract active MO coefficients) two-index transformations, a considerable 

savings. 

d) Effective Core Potentials (ECP) 

In the effective core potential method, the core inner shell orbitals are replaced by a 

potential. The primary contribution to SOC comes from the one-electron part that does not 

explicitly include core orbitals. However, the shape of the active orbitals in the core region is 

lost in most ECP implementations, and this decreases the calculated spin-orbit coupling by 

orders of magnitude for heavier elements. Several approaches have been developed to cope 

with this problem: 

a) Christiansen'^ developed a method wherein the operator itself is changed by utilising 

relativistic atomic calculations to obtain the effective one-electron spin-orbit coupling 

operator. 

b) Model potentials (MP)" instead of ECPs do retain the proper shape in the core region. 

c) By using two related basis sets, an all-electron and an ECP set, the integrals calculated 

for the all electron basis set can be back-transformed for the ECP basis set'^, thus 

circumventing the core shape problem. 
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d) Koseki et al^ further developed an effective nuclear charge method, originally developed 

in Ref. 19 wherein the true nuclear charges appearing in the one-electron SOC operator 

are replaced by empirical parameters. 

e) Empirical parameters 

There are several reasons why it can be desirable to introduce some empirical 

parameters into the spin-orbit coupling calculations: 

1. ECP produces inconectly shaped orbitals. 

2. The first-order perturbative treatment and the omission of other interactions (spin-spin) 

can be corrected to some extent. 

3. In cases for which the two-electron contribution is either fully (IE) or partially (P2E) 

neglected, these approximations can be partially compensated by the empirical data. 

The empirical parameters are optimised using the available atomic and molecular spectral 

data. The parameters for the first through the third rows of the Periodic Table are available 

for both ECP and an all-electron basis set^, to be used with the one-electron method. 

f) Thresholds 

As pointed out above, thresholds avoid the calculation of very small contributions to 

SOC, thus saving computational time. One parameter controls all thresholds, denoted by £ 

below. This parameter establishes relative errors in the matrix elements; for example, if e is 

set to 10"^ and the matrix element is 100 cm"' then the absolute error introduced by 

thresholds should be less than .Olcm '. This parameter is used in the following steps: 



www.manaraa.com

23 

£ 
• CSFs with coefficients smaller than are ignored (N_ is 2 for the 2E method and 1 

p " 

for the IE and the P2E methods). 

• In the loop over CSF pairs the calculation proceeds only if the product of two CI 

£ 
coefficients is larger than 7. 

• In the loop over determinant pairs the calculation proceeds only if the product of two CI 

coefficients times the determinant's coefficients times the overlap, qiOjCKCLO, is larger 

£ 
than r—, where NQ is the number of occupied orbitals in the active space (i.e. for 

FOCI or SOCI and N, for CAS or FCI). 

If there are several CI states with a given multiplicity, the maximum value of the CI 

coefficient product over these states is taken. 

A benefit of using thresholds is the indirect use of symmetry. In many cases, the 

symmetry used by GUGA has to be lowered, e.g. in case of non-Abelian groups or when 

several states of different symmetry are requested for the same multiplicity. In such cases the 

threshold filters out the CSFs with coefficients equal to zero by symmetry (along with the 

ones allowed by symmetry but simply small in magnitude). The effect of introducing these 

thresholds can be seen below in the numerical examples. 

g) Computational algorithm in detail 

The current algorithm is shown in schematic form in Figure 1. In order to reduce the 

memory demand, drags and passes are introduced. If sufficient memory is available, there is 

only one pass and only one drag. If the amount of memory is insufficient to store all integrals 
A A A  

at once, at first the code tries to break the 2e SOC integrals not forbidden by 
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Figure 1. SOC algorithm 

calculate AO SOC integrals. 

Loop over bra multiplicities. 

Loop over ket multiplicities 

skip this pair of multiplicities if not allowed by synrnietry" 

Loop over drags 

Loop over passes 

calculate SOC integrals 

Loop over ket CSFs 

Loop over bra CSFs 

skip this pair of CSFs if zero by symmetry" or small SOC 

Loop over bra determinants in the bra CSF 

Loop over ket determinants in the ket CSF 

skip this determinant pair if small SOC^ 

calculate SOC and properties 

propagate the CSF matrix element for each pair of CI states'* 

propagate CI state matrix elements into all combinations of M, values'. 

output matrix elements 

diagonalise the H,o matrix and output results. 

' Synmietry here refers to the rules due to spin angular momentum and hermiticity, as well as 

to the point group rules applied to all operators (i.e. SOC and properties) and all CI states. 

'' Here symmetry refers to point group symmetry for a pair of CSFs and all operators, as well 

as permutation symmetry (the maximum number of allowed discoincidences). The orbital 

occupations and the number of singly occupied orbitals as provided by GUGA are compared. 

Small SOC refers to the threshold values check 

'' This refers to C^AC transformation where C and C are bra and ket CI coefficient 

matrices(expansion of CI states over CSFs, A is the matrix of an operator A in the CSF 

basis. 
A A A  

' The calculated values for SOC £^,£y,£^ matrix elements are combined to form matrix 

elements for each pair of M, values by means described in the symmetry section. 
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A 

symmetry into passes. Passes are used to divide the work for the components of i and drags 
A 

divide the work for each component of i. The following decision is made in the order of 

decreasing memory available: 
A A A  

one pass: all of symmetry allowed 

A A A 

two passes: pass 1: pass 2: 

A 

three passes: each individually in the order x,y,z. 

(Note that "forbidden by symmetry" as applied to integrals here refers not to integrals 

themselves, but to CI states. The meaning is that none of the CI state pairs requested will 
A 

require these particular £ integrals). 

If insufficient memory is available for 2e integrals at the maximum number of passes 

(three or less if all CI states do not require some integrals), the minimum number of passes is 

used, and to reduce the amount of memory the integrals themselves are divided into chunks. 

During each drag, a fraction of 2e MO integrals is kept in memory and zeros are substituted 

via an index array in place of integrals not in memory). 

6. Comparison of the indirect methods 

a) general comments 

The one electron method is the least resource consuming. The partial two-electron 

method in practice requires little more resources than the one-electron method. This is true 

for several reasons: 

1. the number of determinant pairs to be considered is the same as for the one-electron 

method (at most one discoincidence allowed). 
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2. the four-index integral transformation can be done with the expense of a two-index 

transformation 

3. there is no need to store four-index two-electron integrals in the MO basis in memory 

Additional expenses include having to calculate two-electron integrals in the AO 

basis. They can be stored on disk while being calculated and read while doing the four-index 

transformation. This does not require a noticeable amount of memory, although if available, 

larger buffers can be used to speed up the calculation. These expenses (integrals and 

transformation) are usually insignificant, especially when compared to the expenses of the 

further matrix element calculation for a large CI. 

On the other hand, the full two-electron method requires treating many more 

determinant pairs as the number of discoincidences can be two, the four-index transformation 

is not trivial and most importantly the two-electron integrals are to be kept in memory (for an 

efficient program) and their number is N*/4 for orthogonal and N/ for biorthogonal orbitals. 

When comparing the methods numerically it is worth remembering that the first order 

perturbative SOC treatment and neglect of other interactions (spin-spin etc) can introduce 

errors comparable in magnitude to the error of the partial relative to the full two-electron 

method even for the first row of the Periodic Table. 

The partial two-electron method developed here can be compared to the mean-field 

method^. The mean-field method is more general in the treatment of the active-active two-

electron contribution. In the partial two-electron method, only the CAS core orbitals (spin-

orbital occupation of 1) are included in the two-electron contribution. In the mean-field 

method, all active orbitals are assigned fixed occupation numbers (between 0 and 1). In both 

methods, the two-electron part is then sunmied over the coincident orbitals with these 

occupation numbers as weight factors. Both methods neglect contributions due to active-

active discoincidences. The mean-field method introduces an approximation to the integrals 
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as well (namely, only one-centre integrals are computed and the rest are discarded; this is 

justiHed as the SOC operator is short-ranged). In the present partial two-electron method, no 

such approximation is made. The extra degree of freedom of the mean-field method (the 

freedom to choose occupation numbers) may be useful. 

In the numerical examples below no empirical parameters are used (true nuclear 

charges). For the notation in the tables in this section, consult Table 4. The results are 

obtained with .1% relative error threshold. 

b) introductory numerical examples 

XHj, X=C,Si,Ge,Sn4*b. 

Spin-orbit coupling between 'A, and states has been studied for a series of XH2 

molecules. The geometries are for the minimum energy potential surface crossing, as found 

in the previous ECP-based study*'. The active space used here is [6/6], i.e. 6 electrons in 6 

active orbitals. CASSCF spin-orbit coupling calculations have been performed using 

biorthogonal orbitals with the core optimised for the singlet. The second order CI (SOCI) 

SOC calculations were performed with singlet orbitals. Two basis sets have been used. The 

first (Table 4) is the MINI basis set developed by Huzinaga et aF. The second is the WTBS 

minimal basis set for X and cc-ptvz for H, developed by Huzinaga et al^ with two s and two 

p functions on each heavy atom uncontracted; in addition, one d on Ge, Sn, and Pb and one f 

on Pb are uncontracted. It is possible to study SOC at both CAS and SOCI level for the 

second basis set since this is not a minimal basis set. The results obtained using the larger 

basis are given in Table 5 and Table 6. A study of relativistic cffects without separating 

scalar and vector contributions for similar species was conducted by Dyall^. 
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Table 4. "Mini" basis set CAS XH, (X=C,Si,Ge,Sn,Pb) results. 

Cie^cm"' Cp2e''cm* Cje' cm'  Al,e' cm' Alp2e®cm' Alje^cm'' 

CHa 26.78 14.89 13.25 12.4 18.937 8.406 9.565 

SiH, 96.38 74.57 73.73 1.1 68.15 15.42 16.01 

GeHz 539.9 481.1 480.4 .2 381.74 41.53 42.09 

SnH, 1226. 1137. 1136. .05 867.26 63.45 63.86 

PbH, 2149. 2046. 2046. .02 1519.40 72.50 72.79 

"  C,e ,  Cp2c,  Cie  denote  SOCC for  1E,P2E and 2E SOC correspondingly 

"fipje denotes relative error in C(Cp2e relative to Cje) 

'  At,e ,  Mm 1 Mnt  denote  absolute  values  of  IE,  P2E and 2E matr ix  e lements .  The le  and 2e 

matrix elements are always opposite in sign. 

Table 5. WTBS basis set CAS XH, (X=C,Si,Ge,Sn,Pb) results. 

Cie cm' Cp2e cm ' C2e cm ' &m% Mie cm"' A1p2e cm"' AtjeCm"' 

CH, 24.34 14.12 12.27 14.6 17.213 7.232 8.540 

SiH, 74.25 57.93 57.11 1.4 52.50 11.54 12.12 

GeH, 367.7 328.10 327.3 .2 260.03 28.03 28.57 

SnH, 813.8 757.0 756.5 .06 575.47 40.18 40.56 

PbH, 2092. 1999. 1999. .02 1479.22 65.60 65.92 
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Table 6. WTBS basis set SOCI XHj (X=C,Si,Ge,Sn,Pb) results. 

Cie cm"' Cp2e cm ' Cje cm"' fip2e % A1,e cm' A1p2c cm' M2e cm"' 

CH, 23.54 13.66 11.92 15.1 16.645 6.989 8.218 

SiHj 72.31 56.42 55.64 1.4 51.13 11.24 11.79 

GeH, 374.2 333.4 332.7 .2 264.58 28.80 29.32 

SnH, 850.2 789.6 789.1 .07 601.18 42.85 43.23 

PbH, 2242. 2140. 2140. .02 1585.69 72.06 72.39 

Note that for both basis sets and at both levels of theory (CAS, SOCI), the agreement 

between P2E and 2E methods is quite reasonable for all Group IVA elements, and the 

relative error decreases with increasing mass. The use of SOCI has only a small effect 

relative to the CASSCF results. 

X\, X=0^,Se,Te. 

For these species, spin-orbit coupling is studied at the CAS level. The basis set is 6-

21G" (X=0) or 3-21G^(X=S,Se,Te). The geometry has been optimised at the CAS level. 

The experimental value for the "Ilsn-'ri,;, splitting in O,* is" 200.2 cm ' and with a better 

basis set the theoretical prediction is" 195.1 cm"'. The results are presented in Table 7. 

As for the XHj species, the partial two-electron method is seen to provide reasonable 

accuracy relat ive to  the ful l  2E method.  The Hrst  row of  the Periodic  Table  may require  ful l  

two-electron treatment if high accuracy is sought after. 
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Table 7. X2* (X=0,S,Se,Te) CASSCF/split basis results. 

^le ^P2e A<,e cm' Alp2e 

cm'  cm'  cm'  cm'  cm'  ", cm"' 

0,/ 1.267 177.8 117.0 110.2 6.1 125.70 42.98 47.76 155.9 

s,* 1.869 416.1 338.7 336.2 .74 294.22 54.74 56.51 475.4 

Se,* 2.150 1470. 1317. 1315. .15 1039.36 107.85 109.24 1860 

Tej* 2.585 2643. 2452. 2451. .05 1869.04 135.16 136.05 3466 

" ^n3/2-*n 1/2 splitting obtained with the full two-electron SOC. 

c) Effect of orbitals and CI level on SOC 

Next, consider the recently studied van der Waals structures of BH2*' and AlH,^. 

Spin-orbit coupling plays an important role in the chemistry of many high energy species, 

because it is very important for such materials to exhibit sufficiently high barriers to ensure 

stability. Such barriers can be greatly lowered due to potential energy curve crossing caused 

by diabatic interactions such as spin-orbit coupling. The geometries used represent the 

minimum energy crossing of the ^A, and "Bi surfaces at the multi-reference CI (MRCI) level 

of theory. The effect of orbitals and CI level on both the splitting between *A, and "B, 

surfaces and spin-orbit coupling with both full and partial two-electron methods has been 

studied. All valence electrons are included in the active space ([5/6]). The basis set for BHj is 

aug-cc-pVTZ^ on both B and H, for AlH, it is cc-pVTZ" on A1 and aug-cc-pVTZ on H. The 

results are summarised in Table 8 and Table 9, for BH, and AlHj, respectively. 
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Table 8. BHj CAS/FOCI/SOCISOC results. 

CI Orb 'Br'A, 

cm"' 

Ctc cm' Cp2e cm' C2e cm ' Mic cm ' Alp2e 

cm'  cm"' 

CAS -A,c 300.6 6.85 3.39 3.01 4.8409 2.4446 2.7157 

CAS ^BjC -544.6 6.86 3.42 3.02 4.8495 2.4341 2.7137 

CAS 'A, 7578.5 7.00 3.47 3.05 4.9494 2.4927 2.7920 

CAS -3852.7 7.16 3.56 3.14 5.0642 2.5456 2.8410 

CAS 'A,+'8, -1058.1 7.02 3.48 3.07 4.9621 2.5046 2.7944 

FOCI 'A, 578.5 6.68 3.32 2.92 4.7255 2.3801 2.6607 

FOCI -B, -2962.9 6.75 3.37 2.98 4.7756 2.3940 2.6707 

FOCI -Ai+'B, -2599.8 6.76 3.35 2.97 4.7800 2.4111 2.6804 

SOCI 'A, 701.9 6.79 3.37 3.00 4.7994 2.4176 2.6795 

SOCI -B, -1499.7 6.81 3.40 3.02 4.8147 2.4120 2.6797 

SOCI -A,+-6, -1160.9 6.78 3.37 3.00 4.7966 2.4168 2.6770 

Orb stands for the sets of molecular orbitals: 

"A,c: two separate MO sets, fully optimised for "A, and "B, optimised with ^A, core. 

^Bic: two separate MO sets, "B, fully optimised and "A, with "B, core. 

All other rows represent single MO set, "Ai+'Bj being two state averaged (50%+50%) 

orbital set. 

"Bi-'Ai refers to adiabatic splitting between the two levels. 
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Table 9. AlHj CAS/FOCI/SOCISOC results. 

CI Orb 'B,--A, 

cm'  

C,e cm ' Cp2e cm ' Cje cm"' At,e cm"' A1p2e 

cm'  

M2C 

cm'  

CAS -A,c 337.5 23.77 17.90 17.66 16.8093 4.1529 4.3231 

CAS -B,c 177.9 23.12 17.38 17.14 16.3516 4.0595 4.2296 

CAS 'A. 8373.7 30.99 23.36 23.05 21.9145 5.3947 5.6152 

CAS -5805.3 29.79 22.31 21.99 21.0682 5.2916 5.5197 

CAS -A,+'B, 387.6 31.28 23.56 23.24 22.1195 5.4618 5.6839 

FOCI 'A, 1322.2 26.31 19.68 19.38 18.6018 4.6854 4.8971 

FOCI -B, -1282.0 26.97 20.18 19.89 19.0731 4.8031 5.0093 

FOCI -A,+-B2 1357.9 28.05 21.04 20.74 19.8357 4.9595 5.1679 

SOCI 'A. 579.6 27.01 20.22 19.93 19.1014 4.8056 5.0060 

SOCI -B, -411.7 26.45 19.76 19.48 18.7052 4.7330 4.9330 

SOCI -Ai+-B, 38.2 27.62 20.69 20.41 19.5293 4.8971 5.0971 

The results for these molecules demonstrate the general trend that the choice of 

orbitals and CI level can have a dramatic impact on the splitting between the two adiabatic 

levels. Because two similar numbers are subtracted, high accuracy in both is required for an 

accurate difference. At the same time the spin-orbit coupling is not a property obtained as a 

difference and thus a much smaller effect of both orbitals and CI level is observed. 

Nonetheless, the SOC constants predicted by the P2E method are in good agreement with the 

much more resource consuming full 2E method. 
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d) Effect of thresholds on SOC 

AIH2 as described above is chosen as a test of the influence of the threshold value 

upon SOC. "A,+^82 orbitals are used throughout. Timings for SOC calculations represent the 

wall-clock time. The timing for the default value of the threshold (10~*) and 2E method is set 

to one. At the CAS level, there are 59 ^Ai and 56 -82 CSFs (in C2v). In this case the 

calculation of two-electron SOC integrals gives the dominant contribution to the timings. At 

the SOCI level, there are 130411 *A, and 130314 *82 CSFs (in Cjy). The results are 

represented in Table 10 and Table 11, respectively. 

Table 10. Threshold effect on SOC, AlH, at CAS level. 

£ #-A,  #-82 Cle cne M.C P2E 2E 

CSFs CSFs cm'  cm"' cm"' cm'  cm'  cm'  time® time® 

10- 56 55 31.29 23.51 23.25 22.1289 5.4522 5.6865 .95 1.00 

10"^ 59 56 31.28 23.55 23.24 22.1194 5.4606 5.6839 .94 1.01 

10-* 59 56 31.28 23.56 23.24 22.1195 5.4618 5.6839 .94 1. 

10' 59 56 31.28 23.56 23.24 22.1195 5.4617 5.6839 .94 1.01 

10"^ 59 56 31.28 23.56 23.24 22.1195 5.4617 5.6839 .94 1.00 

* arbitrary units. 

At the 10"^ threshold, the preceding CI takes .32 and the IE method .23 in the units of 

of 2E method. Thus the P2E method takes comparable time with the IE method (.26 vs .23), 

the difference coming from two-electron integrals and four-index transformation. 

The results obtained in this subsection demonstrate that the threshold values are set 
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properly, that is, the relative error in SOC is not greater than the threshold value used. Some 

feeling for the increase in computational expense (time) as a function of the threshold value 

is gained as well. It can be seen that the timings for the P2E method is far less dependent 

upon threshold as compared to the 2E method, at the SOCI level of theory. 

Table 11. Threshold influence on SOC, AlHj at SOCI level. 

E #^A, # -B, Cp2e ^20 M.e A1p2e P2E 2E 

CSFs CSFs cm'  cm'  cm'  cm"' cm'  cm'  time" time" 

10- 37055 39826 27.56 20.64 20.37 19.4859 4.8821 5.0854 .04 .13 

10"^ 90586 93769 27.61 20.68 20.40 19.5220 4.8938 5.0951 .13 .42 

10"^ 122268 123589 27.62 20.69 20.41 19.5293 4.8971 5.0971 .26 1. 

10"^ 129483 129651 27.62 20.69 20.41 19.5306 4.8976 5.0975 .33 1.84 

10® 130317 130251 27.62 20.69 20.41 19.5308 4.8977 5.0975 .37 2.75 

" arbitrary units. 

e) Comparison with the mean-field method 

The PdCl system was investigated with the mean-field method in Ref. 20. The 

relative error of the mean-field method relative to the full two-electron result (fije. %)'s .02. 

In Table 12 the results obtained with the methods described in this work, using the MINI 

basis set and full valence active space [17/10] are given. The geometry has been optimised 

for the term of interest, "A. 
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Table 12. SOC in transtion metal systems XCl, where X=Ni, Pd, Pt for the term. 

Cie ^P2e Cje Sp2e % M.e Aif2e 

NiCl 2.119 1236. 729.9 617.2 7.8 874.049 357.959 395.21 

PdCl 2.491 2496. 1792. 1780. .7 1764.839 497.506 506.147 

PtCl 2.523 7018. 5764. 5755. .1 4962.263 886.487 892.539 

As expected, the mean-field method works better than P2E, as it has an extra degree 

of freedom and treats active-active contributions rather than omit them as the partial method 

does. The neglect of some two-electron integrals in the mean-Held method did cancel the 

error introduced by neglecting the two discoincidence case. The partial two-electron method 

appears to provide sufflcient accuracy, although for Ni the full two-electron approach may be 

desired for highly accurate calculations. A very interesting observation is made here; the 

two-electron contribution for transition metals (at least for the molecules considered in this 

subsection) is much larger than that for the main group elements in the analogous rows in the 

periodic table. 

f) Magnitude of SOC 

The question of whether spin-orbit coupling interaction can be expected to be large or 

small can be addressed in general. The expressions for the SOC (Eq. (9) and (19)) suggest 

that the magnitude of the spin-orbit coupling interaction can be traced to the magnitude of 

spin-orbit coupling integrals in the molecular orbital basis. These integrals (or their atomic 

orbital counterparts) are undoubtedly dependent upon the local nature of the spin-orbit 

coupling operator that has a built in r ^ dependence. Therefore, it can be seen that one-centre 
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integrals are the major contributors to the interaction. Thus, the SOC integrals in the MO 

basis are expected to be in general larger for bra and ket MOs localised on the same atom. 

This leads to a suggestion of using localised orbitals for the approximations of neglecting 

multi-centre integrals. 

Secondly, it can be expected that for atoms the magnitude of SOC coupling is 

expected to be larger in general than for molecules. Interestingly, some molecules are known 

to exibit a SOC interaction virtually identical to that of a single atom^°. Still, as the atomic 

weight increases, the inner shell core orbitals become less and less changed by chemical 

bonding, hence it is the core orbitals on these heavy elements that provide the major 

contribution to the SOC regardless of chemically active valence orbitals. It is expected that 

molecular complexes involving the interaction of atoms in the middle of the periodic table 

with light element molecules retain to a large extent their atomic spin-orbit coupling 

interactions. The magnitude of these spin-orbit couplings is expected to be larger than those 

in molecules where the middle-sized atoms form bonds and lose their atomic character. 

Certainly, synmietry plays an important role in determining the magnitude of SOC 

because large contributions can occur with opposite phases and the value of SOC is then 

determined by smaller contributions. The effect of orbital shape upon the magnitude of SOC 

has also been studied^'. 

7. Discussion and Summary 

It is found that the two-electron contribution to the spin-orbit coupling grows roughly 

as a linear function of the nuclear charge. The one-electron part exhibits a more complicated 

dependence upon the nuclear charge in the range between linear and square. As expected, the 

partial two-electron method systematically underestimates the two-electron matrix elements, 
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with the relative error systematically decreasing down the Periodic Table. It can be seen that 

already for the second period the error introduced by the partial two-electron method 

becomes negligible or at least comparable to other approximations 

(non-relativistic unperturbed wavefunction, first order perturbative treatment, etc). With a set 

of reoptimised empirical parameters, a semi-empirical partial two-electron method may toffer 

much better performance (for heavier elements) than the one-electron semi-empirical 

method, for the first row of the periodic table. For the second row, the ab initio partial two-

electron method is expected to deliver sufficient accuracy. There does not seem to be any real 

necessity to include two-electron terms for the last row. 

Various aspects of the dependence of spin-orbit coupling upon various factors are 

discussed in the above subsections where the appropriate numerical examples are studied. 
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CHAPTER m. SPEEDING UP SPIN-ORBIT COUPLING CALCULATIONS 

A paper to be submitted to Theor. Chem. Acc. 

Dmitri G. Fedorov, Mark S. Gordon 

Abstract 

A thorough review of the symmetry properties of the spin-orbit coupling operator 

and its matrix elements is presented. Various consequences of symmetry upon the practical 

calculations of spin-orbit coupling matrix elements at both point and double group level are 

illuminated. A parallelisation scheme and various steps unrelated to symmetry toward 

making the calculations more efficient are discussed. Tests of scalability of the code are 

presented. 

1. Introduction 

Recent progress in studying molecular dynamics involving states of different 

multiplicities, such as conical intersection studies''^ relies to a large degree on the ability to 

calculate spin-orbit coupling matrix elements. Non-relativistic (NR) calculations involving 

average-sized elements, such as those in the 4th or 5th row of the Periodic Table, can be 

greatly improved in terms of energy level splittings by using perturbative treatments 

involving spin-orbit (SO) coupling. There are many different techniques available to obtain 

numerical results^ "*^ for a given system. 
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An efficient spin-orbit coupling calculation will take advantage of symmetry and 

various computational techniques to improve the efficiency. This paper begins with a 

consideration of the applicable synunetry rules. This will be followed by a discussion of the 

computational aspects of the spin-orbit coupling matrix elements. 

The number of non-zero elements that must be calculated can be greatly reduced by 

predicting ahead of time which matrix elements are zero due to synmietry. The general SO 

matrix element can be written as: 

<ariSM, I H„ I aT'i'S'M,' > (1) 

where the Pauli-Breit Hamiltonian'' H„ contains both one and two electron operators. The 

state |QrriSMj> contains the symmetry labels of the wavefunction obtained from a NR 

calculation: T denotes the irreducible representation (irrep) of the point group G of the 

molecule, i distinguishes degenerate components of F, a distinguishes equivalent irreps, 
A 

S(S+1) and M, are the eigenvalues of the spin operators S" and S^, respectively. 

The matrix element in (1) represents the first-order perturbation theory correction to 
A 

the NR wavefunction. Since the non-relativistic Hamiltonian commutes with S" and S., one 

significant use of symmetry is to apply the Wigner-Eckart theorem'. Secondly, H„ 

commutes with a set of rotation and reflection operators, applied to both orbital and spin 

variables, forming the double group G, just as the non-relativistic (NR) Hamiltonian 

commutes with a set of space rotations and reflections forming group G. The eigenvectors 
A 

of the matrix representation of H„ in the basis |QrriSMj> can therefore be classified 

according to the irreps of the double group. Linear combinations of the original states 

|ariSMj> with eigenvectors of the Hjo matrix as expansion coefficients form states with a 
A 

distinct double group symmetry in which H„ is diagonal. Selection rules for groups with 

infinite-fold axes are generally not useful in chemistry because polyatomic molecules 

usually possess lower symmetry. The following discussion is intended mainly for the finite 
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groups. The exact type of nonrelativistic wavefiinction is irrelevant as long as it can be 

described by the labels specified above. A notable exception is the unrestricted Hartree-Fock 

(UHF) wavefunction, where the mles involving spin angular momentum synrmietry are not 

applicable because the wavefunction is not an eigenfunction of 5~. 

It should be noted that most of the symmetry rules presented here have been known 

but not gathered together prior to this work (see, for example, Ref. 2,8,9,'°). Rules that have 

not been discussed previously are presented in more detail in the text and in the Appendices. 

In addition to consideration of symmetry, methods for improving the efficiency of spin-orbit 

coupling calculations, including the use of parallelisation, are presented. 

2. The Wigner-Eckart theorem 

The theorem states that: 

^JZJ +1 ^2) 

where is an irreducible spherical tensor operator of rank k, f* is the so called reduced 

tensor operator, (j'.k,m',q[j,m) are Clebsch-Gordan coefficients (assumed below to be real), 

|ajm> are eigenvectors of angular momentum operators J' and J, and a is used to denote 

any other labels. Now, H„ transforms as (^•S) = LoSo-(L^S.+L.S^)/2 and 
I 

/± =+('^x -^y) • Taking to be where k=l and q=l,0,-l, it is therefore possible 

to rewrite the matrix element (I) as: 

{anSM,\HjaTrs'M:) = S (S'XM'^q\5,Af,)(an5|L_,5|aTrs')(-l)'' (3) 
g=-l 

A 

where the numerical constants are included in for simplicity and the vector operator S 

has been reduced to the scalar operators. For S=0 and S'=0 the coefficient (S',1,0,0|S,0)= 0, 
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so it follows that: 

(a) A matrix element between two singlets is zero. 

Secondly, using the property of the Clebsch-Gordan coefficients (S,l,M^,qlS',M^')= 0 if 

|S-S'|>1 or Mj+q Mone obtains: 

(b) The SO matrix elements are zero unless |5-5'|<i 

Furthermore, 

(c) at most three elements need to be explicitly calculated, given S and S'. 

<ariSM,' -1| H„| aT'i'S'M.'> = (S',l,M,',-l|S,M,'-l)<ariS| 4^1 a'ri'S'>(-l) (4) 

<ariSM;|H„| a'ri'S'M,'> = (SM,M,',0|SM,')<ariS 14^1 aT'i'S'> (5) 

<ariSM.'+l| H.J aT'i'S'M,'>= (SM,M,',+l|S,M,'+l)<ttriS| LJ\ aT'i'S'>(-l) (6) 

The remaining elements are: 

1) zero if |M,-Mj'|>l The H,o matrix is tridiagonal (diagonal being defined as M=M,'). 

2) calculated for an arbitrary M, by using one of the basic three expressions in (c) e.g.: 

<ariS M, -1| H„| aTi'S' M, > = 

(S',1, M, -1|S,M, -l)<ariS| LJ\a'ri'S'>/(SM,M,',-l|S,M,'-l)(-l) (7) 

where the reduced matrix element is calculated from the above defining relation (for M,'). 

It should be noted that some Clebsch-Gordan coefficients are equal to zero, for 

example, (I,1,0,0|1,0) and (2,2,0,0|1,0). It is important to keep this in mind when actually 

implementing the Wigner-Eckart usage of the reduced matrix elements. It is not possible to 

use M,=M,'=0 to get the reduced matrix element in these cases as it would lead to division 

by zero. Using the largest possible M, such as Mj=S, Mj'=S', however, always leads to non

zero Clebsch-Gordan coefficients. 
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3. Hermiticity and time reversal, real valued NR states 

If one uses real valued NR states, it is possible to reduce the number of matrix 

elements one must explicitly calculate from three to two. Note that this corresponds to 

calculating matrix elements of the three operators represented schematically by 
A A A A A A 

L^S,L^S,LS. 

Elements along subdiagonals are bound by a simple relation. To see this, consider 

states of different multiplicity, 

{ariSM,|H„|aTi'S + l.M. +1) = (S + + l,-l|S,M.)(ariS|L,s|aTi'S + l)(-l) 

= (S + 1,1,M, + 1,-1|S,M.)(-1) -z^aris|[Fx^]^SaT'i'S + l^ + (-i)j^ariS [?x|]^s|a'n's + l^ 

(ariS,-m. |h„|aTl'S + i,-m, -1) = (S + - l,l|S,-M.)^ariS|L.s|ari'S +1^-1) 

= (S +1,1,-M. - 1,1|S,-M.) -/^ans|[? X |]^5|aTi'S +-/(-0^ans|[F x h 

(8) 

(-1) 

(-1) (9) 

It can be proven generally that (S+1,I,M, +1,-1|SM,)= (S+1,1,-M,-1,1|S,-M,) (Appendix 

ni), so that by comparing the right-hand sides of equations (8) and (9) it can be seen that 

their left-hand sides are bound by the relation: 

<ariS M, I H„| aT'i'S+1, M, +I>=<ariS ,-M, | H„| aT'i'S+1, -M, -!>' 

Similarly, for states of the same multiplicity: 

(otism, - i|h„| aTi'sm.) = (s,l,m,,-l|s,m, - l)^aris|l,5| a'n's)(-l) 

= (S,1.M„-1|S,M,-1)(-1) -£^ans[rx^]^^aTi'S^ + i(-i)^aris|[Fx^]^S aTVS^ (-1) 

(ariSM,|H„| ATVSM, -1) = (S,1,M, -l,l|S,M,)(ariS|L S| aTi'S)(-l) 

(10) 

(11) 

= (S,l,M,-l,llS.M,) -/^aris|[?xp]^5| aTrS^-/(-t)^aris|[?xp] 5 ATVS 
(12) 

(-1) 

However, (S,l,M„-llS,\^-l)=(-l) (S,l,Mj -1,1|S, M,) (Appendix HI), so by comparing the 
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equations (11) and (12) it is seen that; 

<ariS M, -1| H,J aT'i'S M, >=<ariS M, | H„| aT'i'S M, -1>*(-1) (13) 

For real NR states only the diagonal and one subdiagonal need to be explicitly calculated. 

The other subdiagonal is readily calculated as the complex conjugate (different 

multiplicities) or negative complex conjugate(same multiplicities) of the first subdiagonal. 

A 

Hermitian character of H,Q. 

Consider <QfriSMj| H^j QfriSMj> « <ariSMj| Lg5| ariSMj> 

The matrix element must be real since the operator is Hermitian, but the angular momentum 

operator is proportional to i, imaginary unity. So, provided that real basis functions are 

used, this matrix element is purely complex. This implies that: 

<arriSMj| H,o|QrriSMj> = 0 (14) 

Using the previously obtained relation (9) for Qr=a',r=r',i=i' 

<ariSM,-l| H,J ariSM,>=<ariSM,| H„|ariSM,-l>* (-1) 

A 

Since Hj^ is Hermitian, 

<ariSM,-l| H„|ariSM,>=<ariSM,| H„|ariSM,-l>* 

This implies that <QrriSMj-l| H„|ariSM,>=<arriSMj| H„|anSM,-l> = 0 (15) 

From (14),(15) and (7) one concludes that: 

Matrix elements between the same state are zero provided that the states are real-valued. 

Time-reversal symmetry. 

It can be proven generally^ that the matrix elements of operators invariant under time 
A 

reversal (such as H„ ) in the time-reversal invariant basis set are real. This could be 

useful if a different basis set (i.e., not simply NR wavefunctions, but certain linear 
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combinations of them) were employed. Such a basis can be constructed from linear 

combinations of |QrriSM;> ± |QrriS,-M.> for integer S. 

4. Double group symmetry 

As is well known, in order for a matrix element to be non-zero, the direct product of 

irreps to which bra, ket and the operator belong must contain the totally symmetric irrep. 

This is a consequence of the requirement that the matrix element taken as an integral over 

space variables and as a scalar product for the spin coordinates be independent of an 

arbitrary rotation of the entire system, that is, 

=0, unless r, ® Fa ® T: contains the totally symmetric irrep. (16) 

Since H„ transforms as a scalar product of two pseudovectors L and S, it transforms as a 

scalar, or in other words it belongs to the totally symmetric irreducible representation. Thus 

the requirement for the matrix element to be non-zero is: 

X (g) - <5r, .r, ^ n = ^^2 • where x are the characters. 
gec 

The NR wavefunctions will mix in general into several irreps of the double group, thus the 

matrix element (16) is zero unless there is an irrep of the double group to which both bra 

and ket belong. 

The procedure for determining the double group irreps to which the nonrelativistic 

wavefunctions belong will be outlined below. This procedure can also be reversed to And 

bases of the irreducible representations of the double groups as well. Since the number of 

NR states included in the SO calculation is usually small, and in order to take advantage of 

conventional algorithms for the matrix element calculation, the NR states are used as a 
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basis. Consequently, the H,o matrix in this basis is diagonalised (as opposed to using the 

In the discussion below, bars above symbols (eg G) denote double group entities. 

The following projection operators extract the functions belonging to the irrep of the double 

group; 

where 71 is the rotation operator representation of the double group elements, D^ig) are the 

diagonal elements of the matrices of the irreps of G, is the order(degeneracy) of F, 

is the order(size) of G. The condition for a state |ariSMj> to mix into row k of an irrep F 

is 

I oF/SAf, 0 Qgj 

Before explicit formulae are obtained, it should be noted that generally for non-

Abelian groups when doing quantum-mechanical calculations, one does not obtain states 

with a pretabulated irreducible representation row-symmetry. Unless special measures are 

taken, row symmetry specific components of degenerate irreps mix with each other. Thus, 

instead of having a distinct row label "i", a more general case will be considered, namely 

with label j which simply numbers degenerate components and does not coirespond to row 

symmetry in the sense of transformation properties with pretabulated matrices. The case 

with the row symmetry present will be derived as a special case at the end. 

A state with mixed row symmetry (i) can be written as 

A 

symmetry adapted states as the basis in which is diagonal). 

"l (17) 

|ary5M,>=2<i,|ar«M,) (19) 
1=1 

Next, consider the relation P[ | dTjSM^ > = 0 (20) 
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T,\criSM,> = f^a,T,\oiriSM,) = %a„%D^.,{g)'^ , (f)oTi'SM,') = 0 (21) 
'=1 '=1 '' »;=-$ ' ' ' 

where D*" and are the matrices of the irreducible representations of groups G and Special 

Orthonormal group S0(3) (also known as R, and KJ, respectively, and aij are the 

coefficients. It should be noted that D^^Cg) does not depend on the colour (colour can be 

defined as the phase in the Euler angle representation: e.g., white colour set to 5=0 and 

black to S=27C as added to Euler angle a, spin-wavefunction changes sign when rotated by 

271) of g as the states | afjSM, > are classified in the group G (or in other words, as single-

valued representations of the double group). The ajj are unknown and treated as linearly 

independent quantities. Thus the relation (20) becomes: 

(g)|an'5M;) = 0 
1=1 i' M,'=-S ' ' ^22) 

Using the linear independence of lafi'SM',) , the individual coefficients are zero for all i' 

and M;. 

vi-.n;-. s D^'(r>D!:,(g)iy (?)=o 
,=i ?€c ' ' (23) 

Finally, using the linear independence of aij,the individual coefficients for all i, i' and M,' are 

zero: 

(f) = 0 
gee ' ' (24) 

Therefore, 

X  o f c j  )£>'(g) X D'Cg) = 0 (25) 
«€C 
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s 
in terms of the tensor product for all Ms, and one can replace the D matrix by the Mj -

S 
column of D for a speciflc Mj. This is easily identifiable as the relation stating that the 

product of two irreducible representations F and S does not contain F. 

The final result given in equation (25) is easy to apply. It can be readily deduced that 

the states of odd 2S mix into double-valued irreps F only, and correspondingly even 2S 

states mix into single-valued irreps only. This follows from D [,^ ^) = ±D where the 

p lus /minus  r e f e r  t o  s ing l e /doub le  va lued  i r r eps  r e spec t ive ly ;  and  f rom D ® ( g )  =  ± D ® ^ )  

where the plus/minus refer to even/odd values of 2S, respectively. Note that g and g differ 

by a rotation of 2;r about the z-axis (in the Euler angle representation). 

Thus states of integer and half-integer S do not mix with each other. 

The formula (25) can finally be simplified to: 

9^0 (26) 

Note that the sum runs over the white elements of G (i.e. over a subgroup of G isomorphic 

r  s  
to G). In the case of distinct row synmietry i, the direct product D x D is replaced by 

p 
Df X  , where D  ̂  stands for i-th column of D . 

Matrices D  ® f e r ) ,  also known as Wigner functions, are straightforward to calculate. 

Parametrisation of g by the three Euler angles is convenient (see Appendix I). 

To summarise briefly, the double group selection rule is: 

<QrFiSMj I H„ | orT'l'SMj' > is zero if there are no F and k such that 

£Dl\g)D'{g) X (g) it 0 and }lD^\g)D'"(g) x . (g) # 0 
^ (27) 

where Df, is the M, column ofD^. In addition: S and S' should be both integer or both half-

integer and F single or double valued respectively; D [ is to be used in place of if 

row symmetry is present. 
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As was pointed out earlier, only half-integer spins mix into double-valued irreps of G, thus 

double group symmetry per se is used only for half-inleger spins. 

5. Point group symmetry 

A somewhat different kind of selection rule can be derived from a combination of 

the Wigner-Eckart theorem and point group symmetry. After application of the Wigner-
A 

Eckart theorem one is left with matrix elements of the type: <QrriSMj' -q| | QrT'i'S'Mj'> 

oc <ariSM,' -q| 4^1 aT'i'S*M,'> 

This matrix element is equal to zero unless FxP'^ xF' contains the totally symmetric 
A 

representation of G. itself transforms as linear combinations of the pseudovector 

A A A  

components (which transform as x,y,z except that they are even under inversion). 

Depending on implementation of actual calculations, it may be beneHcial to explicitly 
A A A  

rewrite the matrix elements in terms of L^,Ly,L., because for the more common groups it is 

A A A A 

andLj, that have unique irrep labels rather than and L.. 

6. Comparison of the point and double group rules 

Even though the point group rules may seem less powerful due to the absence of 

spin dependence, they are in fact more restrictive and useful than the double group rules. 

There are two reasons for this: the spin dependence is actually not neglected, but taken full 

advantage of by means of the Wigner-Eckart theorem, and secondly the basis set in terms 

of which the rules are formulated (NR wavefunction) is naturally suited for point group 

rules. The bases of the irreps of the double groups are often built from several NR functions. 
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so the latter functions themselves are unwieldy and a poor choice for the rules in the double 

group. 

A pictorial example of this is a matrix element between two states havmg the same 

point group synmietry and spin (both S and M,) (equivalent terms), e.g., 

<1-^A,(M,=0)| H„ |2-'A,(M,'=0)>. Such a matrix element is always non-zero in the double 

group, as the radial and the spin symmetries are identical, however in the point group the 

symmetry rule reduces to the symmetry of the component of L^. This makes the element 

equal to zero in those point groups in which belongs to an irrep other than the totally 

synmietric one. 

7. Computational speed-up 

The symmetry selection rules can be used in several different ways. First, let us 

consider techniques to accelerate scalar (single CPU) code. As the size of the active space 

and the level of electron correlation increases, the number of either determinants or 

configuration state functions (CSFs) increases dramatically. The main computational 

difficulty in a SOC calculation usually is confined to having to deal with a large CI 

expansion. Although working in the determinant basis set has its own benefits, such as its 

relative simplicity and efficiency at the same time, the smaller expansion in the CSF basis 

can prove to be a significant advantage. Most techniques described below are applicable to 

both types of wavefunction expansion, the main difference being that CSFs are 

eigenfiinctions of S" and S,, whereas determinants are eigenfiinctions of S, only. 

The approaches presented below are incorporated into the GAMESS package" as 

modifications of the original SOC code written by Koseki^ 
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For a CSF-driven algorithm, a SOC code contains a loop over pairs of CSFs. The 

following criteria can be used to avoid calculating the matrix element between two CSFs. 

a) Overall number of open shells: 

GUGA provides the number of unpaired electrons for each CSF. These numbers for the two 
A 

CSFs cannot differ by more than 1 (one-electron ) or 2 (full Pauli-Breit Hamiltonian). 

b) Orbital occupancies: 

Each CSF has a unique orbital occupancy, consisting of determinants that differ only by 

spin occupations. The maximum allowed number of orbital discoincidences n is determined 

by the structure of the operator: n=l if only one-electron terms are included and n=2 for the 

full Pauli-Breit Hamiltonian. To make this heavily used part of the code more efficient, the 

orbital occupancies (which can be 0, 1 or 2 for each orbital) are packed into integer arrays, 2 

bits per orbital. To determine the number of occupancies exclusive or (XOR) is performed. 

The resultant array is split into 2-byte integer numbers. Each of these numbers is taken as an 

argument to a pretabulated function giving the number of discoincidences. The total number 

of discoincidences is then obtained as a sum of the values of the precalculated array over all 

2-byte numbers. This reduces the linear dependency on the number of orbitals to a 

logarithmic dependency. 

c) If the absolute value of the product of the two CI expansion coefflcients is smaller than 

some threshold value (given by the user), there is no need to proceed further. 

d) Synmietry selection rules. By using the selection rules discussed above, the calculation 

of matrix elements that are zero by symmetry can be avoided. 

The parallelisation of this scheme can be achieved quite easily by dividing the loop 

over CSFs into all computer nodes available for the parallel run. Each node will then 

calculate its share of the CSF pairs, and the resultant matrix elements are then summed over 
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all nodes. A few timings obtained with the parallel version of GAMESS will be presented 

below. 

As a test case a calculation of ArO'^ has been chosen. All calculations have been run 

on the Scalable Computing Laboratory 64 node Pentium cluster (ALICE'^), Each node is a 

200 MHz Pentium Pro with a 2GB hard disk and 256MB RAM. All timings are wall-clock 

and are given in seconds. 

The basis set used is Ar=(lls,7p,ld)/[4s,3p,Id], 0=(9s,5p,ld)/[3s,2p,ld], and the 

wavefunction is a 14 electrons in 8 orbitals complete active space self consistent field 

(CASSCF) plus single (FOCI) and single and double (SOCI) excitations into the virtual 

space. The following states were included in the spin-orbit coupling study: l-'Z"*", 'n, 'A, 2-

^n, ^2". There are 145776 singlet and 232848 triplet CSFs. CSFs were generated in Ci 

synmietry to obtain all states at once, and SOC and ordinary integrals were calculated in Cjv 

symmetry. The energy levels including the spin-orbit coupling are given in Table 1. 

The difference between le FOCI and SOCI levels is mostiy due to the change of the 

adiabatic levels. The matiix elements themselves change less: 

The differences between le and 2e SOC at the SOCI level are also fairly small, <35 cm '. 

The scalability of SOC is given in Figure 1. Two-electron SO integrals in the AO 

basis as well as transformations into the MO basis are performed on each node 

independently to reduce the amount of communication traffic. As seen from the figure the 

scalability of the full Pauli-Breit Hamiltonian is the best. The overall scalability is dragged 

down by the CI code. 

FOCI: <1-'21H^ Pn > = -8.7416i 

SOCI: <1-'21H„ Pn> = -12.2431i 

<'n|H„ pn > =-46.9683i 

<^n|H„ pn> = -45.1645i 



www.manaraa.com

54 

Table 1. ArO energy levels(in cm ') including spin-orbit coupling 

Term FOCI with le H.o SOCI with le SOCI with 2e 

'n. -7764.1 -7727.7 -7692.8 

-7682.2 -7648.3 -7647.8 

1- /lo -7600.2 -7569.1 -7602.6 

2-'n, -7599.2 -7567.7 -7602.4 

.3 .5 .0 

4585.4 3685.2 3685.3 

4585.5 3685.2 3685.4 

8172.7 7872.7 7871.9 

'A 22017.7 20367.2 20367.0 

36125.8 32307.5 32306.6 

Adiabatic 1 was chosen as the zero energy. 

8. Summary and conclusions 

General group-theoretical methods have been used to derive important selection 

rules for spin-orbit coupling matrix elements. Whereas some of the results have been known 

prior to this publication, some useful new procedures have been introduced, and as complete 

a symmetry analysis as possible has been presented. Selection rules for the spin-orbit 

coupling matrix elements have been given in terms of both double and point groups. The 

computational procedure for an efHcient spin-orbit coupling code has been described and 

the results of parallel tests have been presented. 

A typical spin-orbit coupling matrix is given in Appendix IV. 
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Appendix I. Wigner functions 

Wigner functions in the Euler angle representation can be calculated as follows''*: 

= exp(-i>na -

= (-1)'""'VO' + rn)\U - mVXj + myXj - m')! x 

„..o) cos'""'"'"-*(i8/2)sin-^-'"""'--*()3/2) 

-  m -  k)l ( j  -  m'-  k) \{m + m'  + k) \  

Appendix II. Arbitrary CI wavefunction symmetry labelling 

While this labelling is a technical issue, it appears sufHciently important to be briefly 

outlined. The necessity for this lies in the fact that especially for non-Abelian point groups, 

existing CI implementations are not always able to assign symmetry labels to the states 
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obtained in a determinant-based calculation, such as CASSCF or MRCI. In particular, the 

non-Abelian GUGA approach does not appear to be widely used. Consider a wavefunction 

' (29) 

where D, are the determinants and C, the expansion coefficients. It is assumed that 

molecular spin-orbitals i/f=<pa in the determinants are already symmetry labelled. For 

simplicity the spin part cr is omitted in the equations below, except where relevant. The 

statement that ^ does not belong to row a of irrep F is equivalent to: 

= 0 where P is a projection operator. (30) 

i t (31) 

Unless special measures are taken, tp will usually be labelled without a distinct row 

symmetry. This corresponds to mixing degenerate components, such as Px and Py for atoms. 

In order to find their transformation law, they can be decomposed into linear combinations 

of row-adapted functions. In the following, below simply numbers degenerate 

components, eg. one can assign k=l for an orbital (fi= Px+Py and k=2 for Px-Py so k=l does 

not imply pure p* or Py. 

a=I 

ce=i o'=i t^=i 

a*l ot^l 4^=1 

D''"'*(g) = fl-'Z>'"''(g)a (32) 

where <f> transform according to row or of the irreducible representation Fand the coefficients 

"a" will be found later. D' gives the transformation law in the new basis. 
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'l. B / '* g I 

« i k. (33) 

Some of the determinants det{^[^'*' ...7^^^"*"}, are linearly dependent. These are only the 

determinants which include degenerate MO's belonging to the same and only for certain 

combinations of spin functions, e.g., for doubly degenerate MOs 

det{ ...(pypup^oi...} and det{ ...(p^a(pfiL...} arise from 7^ det{ ...(p,a^!),a...} 

These linearly independent cases are small in number and are readily accounted for. 

The weight of the irreducible representation r row a in the wavefiinction is: 

The sum over I runs over all determinants in and the sum over J runs over determinants 

generating linearly dependent determinants in Di upon application of Tg. Unprimed indices 

correspond to orbitals found in D, and primed indices are from Dj. [-1]'J arises after an even 

(1) or odd (-1) permutation producing I from J. 

Determinants to be included in the J sum are easy to identify, because they have the 

same orbital and spin occupancies except for one possible degree of freedom; MOs 

belonging to a degenerate can replace one another. So a determinant containing p^, det 

{...Px...}, can be reproduced upon rotation from a determinant with Py in place of p^, det 

{...py...}, and identical in other orbitals. It should be noted that is understood to include a 

label distinguishing equivalent irreps, such as 2 in 2^^, so that does not interact with 3py 

in the above sense. For determinants containing a degenerate irrep, for MOs multiplied by 

the same spin function it is necessary to add determinants to J obtained from those in I by a 

permutation. This can be seen to correspond to restricting J to only determinants found in I 

, y g ' ' " " 
(34) 
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and replacing the product of D' matrix elements with det D''". Since the choice of J for a 

given I is crucial, the following examples should clarify the choice of J. 

Consider a wavefunction consisting of only three determinants in (case A). 

Di=det{ lailei2 aj 

D2=det{ 1 a, le22 a,} 

D3=det{ 1 a, lejS a,} 

(for any spin occupancies) 

The phases and determinants to be included into the J sum are given in Table 2.; I, J and 

[-1]" are defined as in the Eq. 34. 

Table 2. Determinants and phase factors for Non-Abelian groups, case A. 

I J [-IF 

1 1 1 

2 1 

2 1 1 

2 1 

3 3 1 

Another example involving negative phase might be (case B): 

Di=det{l aiale,/?le^} 

D2=det{l Eiale^ a,y8} 

D3=:det{l a^le^ a^a} 

(1 =det{l aiOriej/Sle^}) 

The phases and determinants are given in Table 3. 
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Table 3. Determinants and phase factors for Non-Abelian groups, case B. 

I J [-1]" 

1 1 1 

1' -I 

2 2 1 

3 3 1 

Finally to find the necessary coefficients a, the following procedure can be used. 

Application of on the set (p" produces either zero if (p^'' has no projection in the space 

of r,a or otherwise and (p^° can be normalised for convenience. Functions (p^" can be 

explicitly written in terms of atomic orbitals. 

ra ^ r« (35) 

pa 

The index p corresponds to I (angular momentum quantum number) in case 

spherical harmonics are used or to the rank of the Cartesian direct product tensor (i.e., 1 for 

X, 2 for xy,z" etc) for real Cartesian basis sets, s being correspondingly m or denoting a 

component of the tensor of rank p. R, stands for Cartesian corrdinates of atom t. 

/"(r) = R,) = 
pit pst g 

p" * (36) 

Matrices F(g) give the transformation law for;f. They are the Wigner functions for^ 

having angular dependence of spherical harmonics. For Cartesian angular dependence they 

can be explicitly written down with some algebra as linear combinations of Wigner 

functions. 
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* ' (37) 

where « '»is understood to mean atom t' such that Rt=g-'R,. 

Using the orthonormality of 

n" 
_ V ^ra <P =2^^ak<l> 

(38) 

Appendix III. Clebsch-Gordan coefficient relations 

The following relations used above can be readily proved by using the properties of 3j 

Wigner symbols'. 

; .y 

^ 5 1  5  ̂  

M, -1 -(M,-1)J 

/ S I  S  ^  25+1 

25+1 5 15 

,M,-1 1 -M, 

1 S 

And similarly, 

(S +1,1, M, + l,-l|5, M,) = (-1)^*'-'̂ *'' V2S+T 

^Af,-1 1 -M,^ 

S + 1 1 

= -(5,l,M,-l,l|5,Af,) 

,Af,+l -1 -M,, 

( S+1 1 S 
(s +1,1,-M, - 1,1|S,-M,) = (-1)^^'-'-*^' 

= (-if V2S+T(-1)^*'*'^'' 

^-Af,-1 1 M,, 

( S + 1 1 

^M,+l -1 -M,, 
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= -«• V2^(-l) S+I+I+S f S + l  1 S  

^M,+l -1 -M,^ 

= (-1) 
S + l  I  5  '  

M,+l -1 -Af,^ 

^(_1)5+I-1+M,_>/2^ S + l 1 

^A/,+1 -1 
= (S + l,l,M,+l-l|S,M,) 

where S+l+l+S-2Mj is always an even number as S and Mj are both integers or half-

integers. 

Appendix IV. Detailed structure of the H„ matrix 

As pointed out above, the matrix is tridiagonal and only two matrix elements need to 

be calculated explicitly. The detailed structure is provided below, the cases of equal and 

different multiplicities are given separately in Table 4 and Table 5. The orbital part is 

assumed to be different for the two states. The only two matrix elements which are 

explicitly calculated are A and B, the rest are obtained from these two. 

Table 4. Hj^ matrix for equal multiplicities. 

S S-1 S-2 ... 4- M,' 

s A -B* 0 0 0 

s-1 B aA -bB* 0 0 

s-2 0 bB* ... ... 0 

... 0 0 ... ... ... 

M,T 0 0 0 ... ... 
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A3 - calculated matrix elements, while a and b are Clebsch-Gordan coefficients: 

a = (S,1,S-1,0|S,S-1)/(S,1,S,0|S,S) and b = (S,l,S-l,-l|S,S-2)/(S,l,S,-l|S,S-l) 

" denote further propagation of A and B by means of equation (7). 

Table 5. matrix for different multiplicities. 

S+I S S-1 ... -S -S-1 

s B A bB* 0 0 0 0 

s-1 0 aB cA . . .  0 0 0 

S-2 0 0 . . .  . . .  . . .  0 0 

M, T 0 0 0 . . .  . . .  . . .  0 

-s 0 0 0 0 . . .  . . .  B* 

A,B - calculated matrix elements and a,b,c are Clebsch-Gordon coefficients: 

a s(S+l,l,S,-l|S,S-l)/(S+l,l,S+I,.l|S,S), b ^S+1,1,S-1,1|S,S)/(S+1,1,-S-1,1|S,-S) 

cs(S+l,l,S-l,0lS,S-l)/(S+l,l,S,0|S,S) 
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CHAPTER IV. STUDY OF THE VIBRATIONAL STRUCTURE 

1. Introduction 

It is possible to measure vibrational and rotational structure very accurately',". In ab 

initio studies several approximations are made as the exact solution is in general not possible. 

The basic approximation inherent to many theoretical studies is the already mentioned 

adiabatic approximation, where the independence of electronic and nuclear movement is 

enforced. An independence of rotational, vibrational and electronic structure is often 

enforced as well, and rotations and vibrations are frequently treated with the rigid rotor-

harmonic oscillator approximations. These approximations provide a backbone for the 

further refinement of the methods via the reintroduction of the neglected interactions, as 

simplified models allow for a general and analytical solution to be found. The nuclear 

wavefunction obtained as a result of these approximations is used to obtain the vibrational 

structure of the molecules so that a comparison of theoretical predictions and experimental 

measurements can be made. 

2. Vibrational wavefunction 

In the adiabatic approximation, the total wavefunction is separated into a product of 
electronic and nuclear parts: 

The conventional quantum-chemical application codes focus on accurate calculation of the 

electronic wavefunction Exact analytical calculation of the vibrational 
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wavefiinction <^0®® not appear to be possible in general, so approximations need to 

be made. 

The relative magnitude of rotational (small) and vibrational (large) interaction allows 

one to take the total wavefunction as a product of the rotational and vibrational parts. The 

rotational part is usually treated in the rigid rotor approximation and in this Chapter the 

rotational wavefunction is taken to be unchanged, i.e., the rotational motion is neglected. 

For the vibrational wavefunction, several approaches can be taken. For diatomic 

molecules there is only one vibrational degree of freedom, and several analytical models can 

be solved exactly, most notably, the harmonic oscillator model and the Morse potential 

model (an anharmonic oscillator). For a molecule with more than two atoms one can 

conceivably take a model of non-interacting harmonic or anharmonic oscillators with further 

addition of coupling terms. Such a treatment provides immense benefits of analytical 

solutions, while an alternative approach of numerical solution for vibrational eigenfunctions 

of a potential energy surface calculated numerically on a grid leaves the sensation of physical 

interpretation vanishing into "thin air". 

Yet alternatively to these ab initio approaches one can retreat to the misleading safety 

of a semiempirical approach, where for each vibrational level one extracts the geometry 

from the experiment by means of (Rf,) = -^==. This approach, however, can work only if 

the true vibrational wavefunction resembles the Dirac delta function with a peak at R=Rn. 

This is usually true only for the first few vibrational quantum numbers, in which case all 

analytical methods as well as this semi-empirical one converge to the vicinity of the same 

answer (provided that the is obtained at the same level of theory) as seen in the 

numerical examples below. 
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The harmonic oscillator model works well only near the equilibrium and in the 

dissociation limit it behaves incorrectly. Since the Morse potential model is not much more 

complicated and it does describe the potential energy up to the dissociation limit properly, 

only this model is studied further. A comparison of Morse and harmonic potentials is given 

in Table 1. 

Table 1. Morse Potential vs Harmonic Potential. 

Harmonic Morse 

Potential :/(r) = 

Energy £„ = hQj,(v + - ho},xj^v + ̂  

Eigen

function COM 
ft 

z  = r-R^ 

Polynomials Hermite Associated Laguerre 

Constants II - . a-n-0), = 2ah /—- 0),x, = 
"ilH ' ' 2/x 

Applicable near the equilibrium except r-^0 (not infinite) 

Thus two methods are studied and compared, a semiempirical method in which the 

vibrational wavefunction is sharply peaked at the empirically determined geometry (single 

point method) and an ab initio method, in which the vibrational wavefunction is taken to be 

an eigenfunction of the Morse potential (Morse potential method). The latter case is used 
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only for diatomic molecules and in order to accurately obtain the wavefunction, a series of 

single point energy calculations at a set of intemuclear distances is performed with high 

accuracy. For the numerical examples below, this means a sufficiently good basis set and 

either SOCI or multi-reference CI (MRSD) electronic wavefunction (SOCI plus single and 

double excitations from the core into the virtual space), both based on all-valence CAS. The 

obtained energy values are then least square fit to a Morse potential. From the fit one can 

calculate and then proceed to calculate the properties of interest. 

This does not exceed all possibilities. The RKR method'* can be used to estimate the 

turning points from the empirical data, thus reconstructing the energy curve. Both this 

empirical curve and the ab initio curve can be used to obtain numerical solutions 

(eigenvectors) of the vibrational Schrddinger equation. An improvement for the single point 

method would be to depart from the rigid rotor approximation for the relation between the 

rotational constant and the averaged intemuclear distance. It is known that for some 

molecules the Morse potential does not work very well^ and other functional forms can be 

tried. The problem with other forms is that the wavefunctions may not be found analytically. 

Since the Morse potential works well for the molecules considered, no other form has been 

studied here. 

The empirical Morse curve can be used to obtain the empirical vibrational 

wavefunction integrated with the ab initio spin-orbit splitting A(R) this would yield yet 

another semi-empirical approach. It is thought however that the main reason for the 

discrepancy between the experimental and ab initio levels are the first-order perturbative 

treatment, the absence of spin-spin interaction and the deficiencies in the electron correlation. 
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3. Properties as a function of the vibrational number 

With either a setni-emprical or ab initio vibrational wavefunction and ab initio 

electronic wavefunction the properties are straightforward to obtain for an operator A: 

KAr,R) = ̂ ^{R)V,{r,R) 

A, = Mr)n(RW,(r,R)drdR = 

J 'F;{r,R)A(rW,ir,R)dr\F;;(R)dR = 

jw;;\r)a{rwsir)dr 

In the case of spin-orbit coupling, one is often interested in splitting, i.e. difference 
A  A  

between two spin-orbit coupled diabatic levels (eigenvectors of A = In this case in 

order for A(R) to be the splitting, two eigenvectors and *F"{r,R) of the H,o matrix 

corresponding to the two levels are introduced. 

AiR)  = J R)AirW;ir, R)dr - J R)A{rW;{r, R)dr 

The quantity denoted by A(R) is calculated by the developed spin-orbit coupling code 

with the electronic wavefunction and for a few representative values of R. Thus the A(R) is 

obtained for a few single points on a grid. In order to integrate A(R) with it is 

convenient to interpolate (least square fit) these values of A(R) with an analytical function. 

The form of this analytical function is individually tailored for each molecule as there 

appears to be no exact analytical functional dependence of A upon R in general. Certainly, in 

the limit of R->oo, one should expect to arrive at the SOC values for two separate atoms, 

however even in that case there appears to be no closed form analytical solution for A(R) in 

the case of CI electronic wavefunctions. 

Once the functional form of A(R) is determined, a number of numerical intergrations 

for the desired values of m are performed. Depending on the form of A(R), an analytical 
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integration may also be possible, although the associated Laguerre polynomials appearing in 

the vibrational wavefunction present some difficulty in taking analytical integrals. The 

resultant values of can be directly compared with the experiment. The Morse potential 

parameters such as dissociation energy and equilibrium intemuclear distance are also 

compared with the experimental values. 

4. Vibronic coupling model 

While analysing the experimental data, one is sometimes able to observe small jumps 

in spin-orbit coupling as a function of the vibrational number. These jumps are attributed to 

the coupling between different electronic states because at the averaged geometries 

corresponding to these vibrational states, the two (or more) potential energy surfaces of these 

states come close (or intersect) interacting by means of diabatic coupling potentials, such as 

spin-orbit coupling (and others). Again, two approaches can be tried. 

The first approach is the single point approach, where the electronic states thought to 

couple are calculated at the same geometry. The problems associated with this approach are 

two-fold. The first is the inherent anharmonicity of the potential energy surface, and the 

second is the problem of having to accurately calculate several electronic states at once. 

While there are general difficulties in treating excited states, another impedence is that they 

need to be obtained in one calculation, which is frequently done with CAS state-averaged 

orbitals and further large CI expansion. 

A simple modification of the Morse approach allows for immediate calculation of the 

vibronic coupling as follows. The electronic H,o matrix as a function of the intemuclear 

distance is precalculated in the basis of the electronic states of interest. This matrix 

generalises the previously introduced single constant A(R). Then a vibronic matrix is 
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constructed in the basis of the = V^(/?)f^(r,/?), as before except that now several 

of these are included for each electronic state with a desired vibrational number and 

is now the adiabatic wavefunctions. 

J'f'f (/?)[|"p;(r, 

where the label e denotes an electronic state. 

The resultant (complex-valued) matrix is then diagonalised and the 

eigenvectors of this matrix give vibronically coupled states. It is thought that usually only a 

few vibrational numbers (of the order of two) need to be coupled, thus this matrix is very 

small-dimensional. Note the subtle point: the vibrational wavefunction is optimised solely for 

the term of interest (via the Morse potential parameters) whereas Aee.(R) is necessarily 

calculated from a multi-state calculation where some accuracy is sacrificed due to having to 

treat several states simultaneously. 

The splitting between the eigenvalues of the matrix gives then an estimate of 

the vibronically coupled spin-orbit splitting with the Morse potential approach. 

5. Results and discussion 

Two molecules CO^ and 62^ are studied both experimentally and theoretically as 

described in Chapter VI, where all computational details are given. In Figure 1 and 2 the 

experimental energy levels for CO^ are given. In Figure 3 similar data are given for the 

averaged levels of O2*. The experimental date fit the Morse potential levels perfectly. 

Figure 4 and Figure 5 show the reconstructed experimental Morse curve (i.e., the 

curve is plotted with least square fir Morse potential parameters) and the theoretical predicted 
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single geometry energies and the fitted Morse potential curve. Again the Morse potential tits 

the theoretical data nicely. Since the CO* results were obtained with a less correlated 

wavefunction one can see that the data deviate from the curve near the dissociation iimit. 

This does not occur with Oj*. The spin-orbit coupling splitting A(R) displayed in Figure 6 

and Figure 7 appears to have a different shape for the two molecules studied. Two different 

functional forms were used to obtain an analytic for A(R). The jump near 1.484A on the CO* 

curve is due to potential curve crossing between *11 and "S* terms and the value of A(R) is 

overestimated due to optimisation of the orbitals for term only. The values of A(R) at 

small values of R (<1 A) are difficult to obtain due to strong repulsion of the nuclei. It is seen 

from the pictures that the values of A(R) for CO"^ significantly deviate from the analytic 

function at small intemuclear distances. However the vibrational wavefunction has small 

weight in that area so this deviation does not cause significant error in the numerical 

integration afterwards. 
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CHAPTER V. DIABATIC PROPERTIES 

1. Introduction 

In this chapter, the derivation and description of quantities of chemical interest 

computed from or along with spin-orbit coupling are given. The approach to SOC taken in 

this work can best be described as quasi-degenerate perturbation theory, because a few quasi-

degenerate CI roots are segregated from the rest, and the degenerate perturbative formalism 

is used to obtain the perturbed eigenvalues and eigenvectors of the H,o matrix in this set of CI 

roots. The usual perturbative approach would in fact produce no correction to the 

eigenvalues, as the matrix element between the same state is zero by Hermiticity (provided 

that the states are real-valued!) However, the first order perturbed eigenfunction could be 

calculated, provided that one knows all states of the system; their number is equal to the 

number of CSFs for each multiplicity. This is a resource-consuming task. It should be noted 

that the orbitals are optimised for a specific CI root, so these excited state eigenvalues may 

not be sensible. This problem has been recognised', and one solution is to include SOC into 

the zeroth-order Hamiltonian; i.e., forsake the perturbative treatment in favour of what is 

known as spin-orbit CI\ This has additional benefits: one can include other non-adiabatic 

operators, and since the perturbation treatment breaks down for a large perturbation (heavy 

elements) the non-perturbative treatment is the preferred approach. 

In the quasi-adiabatic approach discussed below the expense of the non-perturbative 

approach is avoided. The eigenvectors of the matrix couple adiabatic states, and thus they 

represent diabatic states. The eigenectors thus obtained can be used to obtain diabatic 
A 

properties, given a quantity of interest with corresponding operator A. 
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Two quantities are considered below: dipole moments and the z-axis component of 

the total angular momentum. 

2. One-electron spin-independent operator (e.g. dipole moment) 

A diabatic matrix element of a one-electron spin-independent operator may be 

expressed as: 

nrcSM, n'ra'S'u; 

nraSM, nT'a' * ' ' 

where 4^, denotes a diabatic state and denote complex-valued H,o eigenvector 

expansion coefficients in terms of adiabatic states. Since the operator A is spin-free, the spin 

part can be summed over by using the orthonormality of the states. The point group selection 

rules can be applied to reduce the number of calculated matrix elements (nPaS AnT'a'^. 

The original dipole moment code was written for GAMESS by Koseki. No additional 

dipole moment calculations have been performed in this work. 

3. Spin-dependent J, operator 

The following quantity is useful for labelling the diabatic states for linear molecules 

and atoms. 

nraSM. nTa'sru,' 

~ S ^^nraSM^ ^ 5) {^nTaSM,^ ^nCoSM.^s 
nCcSM. nT'a' nraSM, 

(2) 
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A 

In the SOC calculations of linear molecules the eigenvalue of the J, operator, Mj is a 

good quantum number. The absolute value of this number (the states are doubly degenerate 

except for Mj=0) is put into the subscript of the diabatic Russell-Sanders terms, > 

' where F is the irreducible representation label, such as S, A etc. 

4. Transitions between adiabatic levels 

In the limit of linear diabatic terms, constant diabatic coupling, etc, in the semi-

classical Landau-Zener modeP of two-state nonadiabatic transitions, the probability of 

transition between two adiabatic levels i and j is given by: 

where g is the adiabatic energy gradient, v is the velocity and Vy is a matrix element of a 

diabatic operator coupling two adiabatic state i and j. 

The matrix element Vy in the case of spin-orbit coupling is better denoted by 

multiplicity labels, thus the notation is changed to P(S,S') and the matrix element to H„(S,S'). 

Since the levels are degenerate, it is necessary to sum over the spin-degenerate adiabatic 

levels and the sum needs to be normalised by the number of spin-degenerate levels. Since 

these expressions have not been published previously, their derivations are presented here. 

First, the derivation of the quantity given above in Eq. (11.2) is given separately for 

equal and different multiplicities. As already pointed out, due to symmetry the constant Cs^. 

is equal to zero unless |S-S' |<1. Secondly, Cs^-Cs-^, thus there are two distinct cases, S'=S 

and S'=S+1 considered next. 

During the derivations the properties of Clebsch-Gordan coefficients are used''. 

(3) 

(i) S=S' 
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s s 
t,  t  £ (sm,ff„|smy+2 f (sm,hJsm.+i) 

M,=-SM',=-S M.=-S '  M,=-S 

by using tridiagonal structure of H,o matrix and the subdiagonal symmetry. 

Cs.s= S |(5,A/„l,0|5,Af,)(5|4|5)|'+ % (5,M,+ 1,1-l|5M,)'||(5|4|5)|'+ (5|4|5)'} (5) 

These Clebsch-Gordan coefHcients are simplified to: 

2 S-1 

(4) 

M. (_i)^-'-«. V25TT(-ir*'' , , 
^ ^ ' V5(5 + 1)(25 + 1) V^(S + 1) 

(6) 

and 

[S,M, +1,1-1|S,M,) = (-1)'-'*"'Vzm 
( S IS 

^M,+l -1 -M, 

( - i f ^ / 2 S  +  l ( - l )  25+1 ' S 11 

^-Af,-1 1 Af, 
(7) 

' '  ^ ^ 2S(S + 1X2S + I) i  2s(s + 1) 

Since the L matrix elements do not depend upon M, the sum of Clebsch-Gordan coefficients 

yields: 

t i M/ =5^21 M.= = 

1 ^ 5(5+ 1)(25 + 1) 25 + 1 

5(5 + 1)" 6 3 

(8) 

and 

5-1 5-1 
2 (sM.*u.-pM.f= I 

Af,=-5 Af,=-5 +1; 

brr. i - *''Xs ̂ '1"-^ = 25(5 + l)^f^_,^ 
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—L_ \(s^ ^ sps -H1) - 2 s(s±m±A] 
2S(S + 1)1̂  A  ̂ 6 J 

25 + 1 
(9) 

Thus, by combining equations (5), (8) and (8) one gets: 

25+1 / . M2 OCj - I  f l /  .  m2 I ,  ,  .  .  ,i2' C  =  

25 + 1 
(10) 

(ii) S'=S+1 

s s + l  . .  V ^ - ^ / i  \ " »  ^ 1 
X  S  { S M ,\h\s + I M :) = £ (sM A hJ s + I mX  +2"^ (SM. «Js + lA/, + l) 

w,—Jw;—5-1 ' W,—S * ' ' Af.—5 \ ' ' 

Again, the tridiagonal structure and subdiagonal symmetry are used. 

Q.5*.= E |(S + l,Af„l,0|5A/,)(5|A|5 + l)' + 
Af, 

X (5 + l,M, +l,l,-l|5Af,)'||(5|4|5 + l)' + (5|4|5 + i)"| 

By using the properties of Clebsch-Gordan coefficients: 

(S + I,Af„l,0|5A/,) = (-l)^^'-'**''V2STTj^'^^^ ^ _^j = (-ir*'-V2Snj 

+ ((5+M, + i)(5-A/~ri)' 
^ ^ V (5 + 1)(25 + 1)(2S + 3) "V (5 + 1)(2S + 3) 

(11) 

(12) 

S  S + l  1 
-M. M. 0 (13) 

and 

(-i)^*'''VIs+T(-i) 
2../ 5 + 1 1 5>j 

I A/J 
= (-l)^^*''V25+T(-l) 25 s s + l  r  

M .  - M - l  1 
(14) 

^ ' V ; V ^ -^(25 + 1X25 + 2X25 + 3) "V (25 + 2)(25 + 3) 

Summing the Clebsch-Gordan coefficients one obtains: 

—-—r< + 2)(25 + 3)L (25 
(5+1)^(25 + 1)-2 

5(5+1X25 + 1) _ 5(25 + 1X5 +1)(25 + 3) 25 +1 
3(5 + l)(25 + 3) 3 

(15) 
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and 

s 

s 

{S + M, + l){S + M,+2) 

(2 

i r y (5^+35 + 2 + M,M = 
(2S + 2)(25 + 3)^fil,^ ' ' 

(5' + 35 + 2)(25 +1) + 25(:£±lp^±l) 

(S + 1)(2S + 1) 

(16) 
1 

(25 + 2)(25 + 3) 

1 
S + 2 + -

3 (25 + 2)(25 + 3) 

combining Equations (11), (15) and (16) one gets: 

25 + 1 

(5 + l)(25 + l)(45 + 6) 25-H 

(25 + 2)(25 + 3)3 3 

'S.S+l 

25 + 1 

( s | l | s + 1 ) [ + + | ( i |  + 1 )  

| | ( s | r . | 5 + 1 ) | ' + K i | 4 | s + 1 ) | ' + K s | i | s + 1 ) | ' | = + ' )  

(17) 

25 + 1 
So in general the spin-orbit coupling constant is —^— times the square of the 

matrix element of L. The degeneracy of the diabatic states is (2S+1) thus the normalised 

constant is what should be used for the Landau-Zener probability: 

(5 £\s' y  
^„(5,5') = 'SS 

2min(5,5') + l 3 

This is the averaged matrix element that can be used to get the probability of crossing or 

other dynamics simulations. 

(18) 
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CHAPTER VI. AN EXPERIMENTAL AND THEORETICAL STUDY OF 

THE SPIN-ORBIT INTERACTION FOR CO^ V^=0-41) AND O* 

(X'n3/2,,^G. v^=o-38) 

A paper accepted to J. Chem. Phys. 

D. G. Fedorov, M. Evans, Y. Song, M. S. Gordon, and C. Y. Ng 

Abstract 

Accurate spin-orbit splitting constants (A,J for the vibrational levels v'"=0-41 of 

CO'^CA'Dj/o 1/2) have been determined in a rotationally resolved pulsed field ionization 

photoelectron study. A change in slope is observed in the v* dependence for Av+ at v'"=19-20. 

This observation is attributed to perturbation of the CO*(A"n) potential by the C0*(B"2^) 

state. Theoretical A^^. values for COXA*n3,2,i/2' v^=:0-41) have also been obtained using a 

newly developed ab initio computational routine for spin-orbit coupling calculations. The 

theoretical Av., predictions computed using this routine are found to be in agreement with the 

experimental A,+ values COXA'IIj/o v^=0-41). Similar A,^. calculations obtained for 

02*(X"n3/2.i/2g, v^=0-38) are also in accord with the recent experimental Av+ values reported 

by Song et al. (/. Chem. Phys., in press). The theoretical predictions are generally lower than 

the experimental results for both the COXA'ITjq^i/j) and systems. 
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1. Introduction 

The spin-orbit constants (Av+) for the v'^sO and 2 vibrational levels of CO'^CA-IIj/z.ig) 

have been determined to be 122.03 and 121.87 cm ', respectively,''^ which are higher than the 

value of 117.5 cm ' cited in Huber and Herzberg^ based on earlier measurements. To our 

knowledge, the Av+ values for the high v*-levels of CO*(A"n3/2,i/2» have not been measured. 

The most general experimental method for the determination of values of cations for 

a wide range of v* levels is the photoelectron spectroscopic technique. Due to autoionization 

mechanisms, photoelectron spectroscopic measurements often allow the observation of highly 

vibrationally excited states for the cation.'*'^ This is especially the case for threshold 

photoelectron or pulsed field ionization photoelectron (PFI-PE) measurements using a tunable 

ionization source,^ where highly vibrationally excited ionic states can be observed due to finite 

couplings to nearby resonance Rydberg states and/or repulsive states. In photoionization studies 

using a fixed energy light source, such as Hel, highly vibrationally excited ionic states with 

negligible Franck-Condon factors can also be observed."* When the Hel photon energy coincides 

with the excitation energy of a Rydberg level, the Rydberg level initially formed can decay to a 

lower vibronic state of the cation, concomitant with the ejection of an energetic elecdron. This 

two-step mechanism can thus give rise to a long progression of vibrational bands for the cation, 

which would not be observed via direct ionization. The Hel spectrum for CO obtained by 

Wannberg et al."* indeed reveals high vibrational bands up to v*=18 for CO^A"!!). However, 

the two spin-orbit states cannot be resolved in the latter experiment due to the relatively small 

spin-orbit splitting constant (Av+) for COXA^3/2.i/2)- Kong et al^ have recently performed a 

high-resolution vacuum ultraviolet (VUV) laser PFI-PE study of CD^(A^3^iq, v^=0 and 1). 

The observed rotationally resolved PFI-PE spectira for these vibrational bands are found to be 
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consistent with =120 cm ' for v^=0 and 1, which is close to the value of 122 cm ' 

determined previously.''^ 

Taking advantage of the high-resolution vacuum ultraviolet (VUV) facility of the 

Chemical Dynamics Beamline established at the Advanced Light Source (ALS),^'^ we have 

recently developed a novel synchrotron based PFI-PE detection scheme,' '" achieving PFI-PE 

resolutions similar to that observed in VUV laser PFI-PE studies.The ease of tunability 

over a wide energy range (6-30 eV) has made this synchrotron based PFI-PE method highly 

productive, particularly in measuring photoelectron bands of a long vibrational progression. 

In recent studies, we have reported rotationally resolved PFI-PE bands for long progressions 

of 0,/(X-n3/2,,«g, v*=0-38)," NO*(X'Z*, v*=0-32)'*, and C0*(X'-2*, v*=0-42).'' Using the 

same experimental method, we have obtained rotationally resolved PFI-PE spectra for 

CO*(A'n3/2.i/2» v*=0-41). The intensities of PFI-PE bands for higher v"^ (>10) levels of 

CO*(A*n3/2,,/2) are more than 100 fold lower than those observed for the v*=0-2 bands. Despite 

the low intensities for the high v^ bands, we have successfully recorded most of the PFI-PE 

bands for COXA^Oj^iq, v*=0-41) at the rotationally resolved level with good signal-to-noise 

ratios. Here, we present accurate A^^. values for CO*(A^n3/2.i/2> v^=0-41) derived from the 

analysis of the rotationally-resolved PFI-PE spectrum of CO. 

In the theoretical front, reliable calculations on spin-orbit interactions have not been 

readily accessible due to the requirement of accurate electronic and vibrational 

wavefunctions. Many theoretical calculations'®"" have been made on the potential energy 

surfaces of CO*. The recent multi-conOguration self-consistent field configuration 

interaction (MCSCF-CI) calculations of Lavendy and Robbe'® and Okada and Iwata" have 

obtained reliable predictions for the vibrational and rotational constants of CO+(A^l3/2.i/2)-
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However, the Av+ value of 92 cm ' for CO+(A^3/2,i/2) calculated by Lavendy and Robbe'® is 

significantly smaller than the experimental measurements'"^ of 122 cm '. 

In view of the lack of computational routines available for reliable calculations of spin-

orbit coupling constants, we have recently developed a new ab initio computational code for this 

purpose. This code, to be included into the production version of the publicly available 

quantum chemistry package GAMESS,® has the capability of performing efficient spin-orbit 

coupling calculations for arbitrary spin multiplicities with any CI wavefiinction types supported 

by GAMESS, for both one and two electron spin-orbit coupling operators. As a test of this 

computational code, we have calculated the A^^ values for CO+(A^3^,/2, v*=0-41) for 

comparison with the experimental measurements. 

Highly accurate spin-orbit coupling constants for 02*(X^n,/2j/2g, v*<ll) have been 

determined previously^' in a comprehensive analysis of the Oj^CA^riu) —> Oj^CX'Og) emission 

system. The VUV laser PFI-PE study of Kong and Hepburn has extended the measurement 

to 02'"(X*n,Qj/2g, v* =24)." By employing the synchrotron based PFI-PE detection method. 

Song et al.. have made a comprehensive spectroscopic study on 02*(X*n,/2j/2g. v* =-0-38),'^ 

which provides reliable Av+ values for these states. Thus, the experimental Av+ values for 

02*(X*n,/2j^g) can be considered well established. For this reason, we have also obtained 

theoretical A^+ values for this system. The comparison of the theoretical values with 

experimental Av+ data for the 02*(X^n,y2j/2g) system serves as a second test case for the new 

computational code. 
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2. Experimental and theoretical methods 

a) High-resolution PFl-PE measurements 

The design and performance of the Chemical Dynamics Beamline at the ALS has 

been described previously.' " Briefly, the major components for the high-resolution VUV 

photoionization facility at this beamline include a 10 cm period undulator (UIO), a gas 

harmonic filter,^ a 6.65-m off-plane Eagle mounted monochromator,' and a photoelectron-

photoion apparatus.®"" 

In the present experiment, helium was used in the gas harmonic Hlter, where higher 

undulator harmonics with photon energies greater than 24.59 eV were suppressed. The 

fundamental light from the undulator was then directed into the 6.65-m monochromator and 

dispersed by a 4800 1/mm grating (dispersion = 0.32 A/mm) before entering the experimental 

apparatus. The ALS storage ring is capable of filling 328 electron buckets in a period of 656 

ns. Each electron bucket emits a light pulse of 50 ps with a time separation of 2 ns between 

successive bunches. In each storage ring period, a dark gap (80 ns) consisting of 40 

consecutive unHlled buckets exists for the ejection of cations from the orbit. Thus, the 

present experiment was performed in the multibunch mode with 288 bunches in the 

synchrotron orbit, corresponding to a repetition rate of 439 MHz. 

The multi-purpose photoelectron-photoion apparatus associated with the Chemical 

Dynamics Beamline was used for the present study.®"" A continuous effusive CO beam was 

produced by a metal orifice (diameter = 0.5 mm) at 298 K and a distance of 0.5 cm from the 

photoionizadon/photoexcitation (PI/PEX) region. Thus, the rotational temperature of the CO 

sample is expected to be =298 K. We estimate that the CO density at the PI/PEX region is 

=10"^ Torr. The photoionization chamber and photoelectron chamber were evacuated by 
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turbomolecular pumps with pumping speeds of 1200 Us and 3400 Us,  respectively. The 

respective pressures maintained in the photoionization chamber and the photoelectron 

chamber were = 1x10'^ and =1x10 ' Torr during the experiment. 

The PFI-PE detection scheme using the high-resolution monochromatized undulator 

synchrotron radiation facility at the ALS has been described previously.' " Briefly, a pulsed 

electric field (height =1.1 V/cm, width = 40 ns, delayed by 20 ns with respect to the 

beginning of the 80 ns synchrotron dark gap) was applied to the repeller at the PI/PEX 

region. This pulsed electric field was used to field ionize high-n Rydberg species and extract 

photoelectrons toward the detector and was applied every synchrotron ring period (0.656 ^s). 

An electron spectrometer, which consists of a steradiancy analyzer and a hemispherical 

energy analyzer arranged in tandem, was used to Hlter prompt electrons. We have previously 

shown that PFI-PEs can be detected with little background from prompt electrons after only 

an 8 ns delay with respect to the beginning of the dark gap. 

The achievable PFI-PE resolution depends on the resolution of the excitation VUV 

light source and the magnitude of the applied pulsed electric field.'" The PFI-PE spectra for 

CO presented in this experiment were measured using monochromator slits ranging from 30-

200 nm. The PFI-PE resolution achieved was 4-7 cm"' (FWHM). The photon energy step 

size and counting time used at each photon energy varied between 0.1-0.3 meV and 3-30 sec, 

respectively. 

The PFI-PE spectra for CO were calibrated using the PFI-PE spectra of the AiX^?y2) 

and NeX*P3/2) bands obtained at the same experimental conditions. This calibration scheme 

assumes that the Stark shifts for the EEs of CO and the rare gases are identical. The 

calibration for the CO PFI-PE spectrum was made before and after the experiment. Our 

previous experience with energy calibrations of the PFI-PE spectra of other molecular 

systems indicates that the accuracy of the present energy calibration is within ±0.5 meV." 
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Since the spin-orbit PFI-PE components for individual v*-levels were recorded in a single 

scan, the error due to energy calibration does not apply to the uncertainties assigned for the 

values. Most of the Av+ values reported here are based on rotationally resolved data and 

have uncertainties well within ±2 cm*'. 

b) Spin-orbit coupling calculations 

Ab initio spin-orbit coupling calculations have been made possible by generalization 

of the existing spin-orbit coupling code built into the quantum chemistry package 

GAMESS.^ In order to accurately reproduce experimental results, a large basis set (AVTZ, 

built into MOLPRO)^^' and an extensive CI wavefunction have been used. The orbitals are 

optimized with the complete active space self-consistent Held (CASSCF) method, the active 

space including 12 electrons in 8 orbitals (2s and 2p on C and 0).[Ref. 30] Energy values are 

further reflned with single and double excitations from the CASSCF active space into the 

virtual space using MOLPRO. We have examined the effect of adding single and double 

excitations from the core Is orbitals into the virtual space: the CO* results do not include 

such excitations and the O,* results do. Spin-orbit coupling calculations are performed with 

the CASSCF wavefunction and Pauli-Breit Hamiltonian,^' including rigorous one and two-

electron terms and using the modified version of GAMESS soon to be released for 

distribution. The effect of including neighboring states into spin-prbit coupling 

diagonalization has been studied. CO* calculations include the 6 lowest CI roots and O2* 

calculations include two roots (i.e., only the state). 

The potential energy of CO*(A^n) has been calculated for a series of intemuclear C-0 

distances (R) of interest and a geometry optimization has been performed (at the CASSCF 
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level) to locate the potential minimum. Experimentally, the splitting between the 

C0^(A^3^ and C0*(A^n,/2) spin-orbit states is found as a function of vibrational quantum 

number up to v*=41. The rotational constants (8^") for CO*(A^n3;2.i/2' v^=0-41) have also been 

determined. In the first approach, the corresponding average R value <r^> for individual v^-

levels of CO*(A"n) is estimated using the harmonic oscillator approximation. 

where B, is the rotational constant given by the experiment and ^ is the reduced mass of 

CO*. At each <r^> value, the spin-orbit coupling constant is computed (the single-point 

approach). As shown in the discussion below, the Av+ constants for CO^C^ITj/j) and 

C0*(^n,/2) calculated at these <r^> distances deviate significantly from the experimental 

values, especially for high v* levels. 

A more sophisticated approach involves the least square fit of the calculated ab initio 

potenital energies at a series of R values to a Morse potential, 

where De is the well-depth and R^ is the intemuclear distance at the potential minimum. The 

best fitted parameters D, and a obtained for the Morse potential are listed in Table I. The 

corresponding vibrational frequency ((0^) and anharmonicity constant (cOeXe) for the Morse 

potential, together with the ab initio Rg value for CO*(A^3/2.iC' v*=0), are also included in 

Table I. We note that for a Morse potential only two out of the four parameters (D^, a, 0)^, 

h 
(1) 

(2) 
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(OeXe) ^6 independent. Since accurate vibrational energies for the v*=0-41) 

states have also been determined based on the simulation of their PFI-PE bands, we have also 

constructed a Morse potential to provide the best fit for the experiment vibrational energies of 

CO*(A"n3;2.i/2)- Th® b®st fitted parameters for the experimental CO^CA^FIj/j) ^nd CO*(A^n,/2) 

Morse potentials are also given in Table I. We find that these Morse potentials obtained based 

on the experimental vibrational energies for CO^(A^n3/2.i/2) are in reasonable agreement with the 

CO*(A"n) Morse potential based on the ab initio calculation. We note that the R, value and the 

width of the theoretical C0*(A^I1) Morse potential are greater than the experimental 

CO*(A^n3/2,i/2) Morse potentials. As a result, the outer turning point of the theoretical Morse 

potential is greater than that of the experimental Morse potential at the same energy. We also 

list the Morse potential parameters for CO'^CA^ constructed based on the vibrational constants 

cited in Huber and Herzberg.^ These parameters are in accord with those deduced from the 

present experiment. 

The vibronic wavefunction used is, 

^''ir,R) = ^l{Ry¥,{r,R), (3) 

where 4'jI^(iJ)is an eigenfunction of the theoretical Morse potential, ^^{r,R) is the 

electronic wavefunction. R and r are the nuclear and electron coordinates, respectively. The 

theoretical A^^ value is calculated as. 
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A 

where Hpg is the Pauli-Breit Hamiltonian. and are the eigenvectors of 

the HpB matrix in the basis of CASSCF states. The unprimed and primed states correspond iu 

the two levels between which the splitting is calculated (i.e., between J=l/7- and J=3/2 

levels). A6 initio splitting constants as a function of R, A(R), are first calculated at discrete R 

values and then fitted to an appropriate analytical form for the convenience of performing 

numerical integration. For the CO'^CA^rij/j.i/z) system, the A(R) fiinction is found to have the 

form A(R) = h(l - tanh[(R - Ro)s]) + \ with the following least square fit parameters: h = 

51.25, Aq = 13.5, Ro = 2.02, s = 3.75. Here, R and A(R) are in A and cm"', respectively. 

The average vibrational energies for the spin-orbit states have been 

determined recently in a similar PFI-PE experiment by Song et alP The Morse potentials based 

on fitting to these experimental vibrational energies are given in Table I for comparison with the 

best fitted ab initio Morse potential for Oj^CX^IT). As a reference, we also include in Table I the 

Morse potential for 02*(X^n) based on the vibrational constants cited in Ruber and Herzberg.^ 

Similar to the observation for the CO^(A"n) system, the theoretical R^ value is larger than that 

determined in the experiment. As a result, the outer wall of the theoretical Morse potential for 

OnXX'FI) is wider than that for the experimental Morse potential. 

The A(R) function associated with Eq. (4) of the Oa^CX^FI) system has the functional 

form: A(R) = h exp[-s(R - RJ"] + Aq. The least square fit parameters are, h = 138.219, \ = 

1.06641, R„ = 1.0115, and s = 58.9876. 
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3. Results and discussion 

a) C(r(A'n3^^v^=0^1) 

We have obtained rotationally resolved PFI-PE bands for v*=0-41). The 

bulk of these data and their analysis, including important issues on spectroscopy and 

photoionization dynamics, will be presented in a future publication." Here, we have selected to 

show in Figs. 1(a), 1(b), and 2(b) the respective experimental PFI-PE bands (solid circles) for 

CO*(A"n3Q_,/2, v^=2, 15, 38) to illustrate of the assignment for the spin-orbit components and the 

typical quality of the simulation. As with the rotational and vibrational constants, the Av+ values 

for CD'^(A"n3/2,i/2. v*=0-41) are derived from the spectral simulation. The intensities shown for 

the spectra of Figs. 1(a), 1(b), and 2 reflect the actual relative intensities. As shown in these 

figures, the intensities for the CO*(A*n3/2.i/2. v*=15 and 38) bands are more than two orders of 

magnitude lower that for the CO^A'Dj/, ,q, v^=2) band. We note that the PFI-PE band for 

^•^(A'nj/,,/,, v*=38) has partial overlap with the CO'^(X*2r, v*=37). Thus, Rg. 2 is a 

composite figure with panel (a) showing the comparison of the experimental (solid circles) and 

simulated (solid line) spectra for C0*(X*2r, v*=37). The analysis and simulation of the PFI-PE 

bands for CXD*(X'2r, v*=0-42) has been reported previously and thus will not be substantiated 

here.'^ 

The relative intensities for rotational structures resolved in a vibrational band were 

simulated using the Buckingham-Orr-Sichel (BOS) model," which is described by the 

formula. 

a(r^N") oc S, QiX-rTrNlC;,, (5) 
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This model was derived to predict rotational line strengths observed in the single-photon 

ionization of diatomic molecules. Since the BOS model does not take into account channel 

interactions, which are certain to occur in the PFI-PE spectra, we may consider the BOS 

simulation used here as semi-empirical in nature. As in previous studies, the BOS simulation 

is valid in determining spectroscopic constants from the experimental PFI-PE spectra. The 

factor Cx is associated with the electronic transition moments, which is the linear 

combination of electron transition amplitudes for the possible angular momenta £ of the 

ejected electron. The other factor Q is determined by the angular momentum coupling 

scheme. The parameter X can be interpreted as the partial wave of the electron in the ground 

state of the neutral molecule. The more general interpretation of X is that of the angular 

momentum transfer in the photoionization process. The angular momentum coupling factor 

Q for the photoionization of the present CO system can be described by a Hund's case (b) to 

(a) transition. The Q factor is thus expressed as. 

where AA = - A' and Q* = |A± 21. Here, A* and 2*are the projection of the electron 

orbital angular momentum and electron spin angular momentum on the axis of CO^, 

respectively, and A" is the projection of the electron orbital angular momentum on the axis of 

CO. Given that AA = 1 for the transition CO'^CA'IIq, v*) <— C0(X'2r, v" = 0), the first 3-j 

symbol of Eq. (6) requires that X > 1. The contribution by each Cx was determined from the 

fit to the experimental data. Each spin-orbit state was simulated using a unique set of C^'s. 

X=MI2 
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The rotational structure observed in the experiment was accounted for using the BOS 

coefficients (C„ C2, C3, and C4). Thus, the possible angular momentum states for the ejected 

photoelectron were / = 0, 1, 2, 3,4, and 5. The possible change in total angular momentum 

for a Hund's case (b) to (a) ionization transition is given by'^ 

M =  r -J"  = l  + 3/2, / + 1/2,...,- / - 3/2. (7) 

Rotational transitions = N* -  N") of -4, -3, -2, -1, 0, 1,2, 3, and 4 (designated as M, N, 

O, P, Q, R, S, T, and U branches, respectively) are clearly observed in the spectra, although 

transitions up to = ±6 are possible according to Eq. (7). 

We assume that the rotational population for CO was characterized by a Boltzmann 

distribution with a rotational temperature of 298 K. The simulation uses known 

spectroscopic constants for the molecular ground state C0(X'2^ v*): co/' = 2169.81358 cm"', 

cOeXe" = 13.28831cm ', B/'= 1.93128 cm ', and a/' = 0.017504 cm"'.^ The spin-rotational 

splitting present in the ionic state has been ignored since it is much smaller than the 

experimental PFI-PE resolution. 

In addition to the BOS Q coefHcients, the rotational constant Bv* and the spin-orbit 

coupling constant were varied during the simulation of each vibration level. The 

simulated spectra (solid line, lower spectra) shown in Figs. 1(a), 1(b), and 2(b) were obtained 

using a Gaussian profile with a linewidth of 4, 4, and 7 cm"' (FWHM), respectively. The 

positions of the rotational transitions CO'^(A"n3/2> N*) <— C0(X'2*, v"=0, N") and 

C0XA^n,/2, v^ I*r) <— CO(X'2r, v" = O, N") are shown by respectively downward pointing 

and upward pointing stick marks in Figs. 1(a), 1(b), and 2(b). As shown in Figs. 1(a) and 

1(b), the agreement between the BOS simulated spectra and the experiment PFI-PE spectra 
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are excellent, yielding values of 120.2±2.0 cm"' for Av+(v*=2), and 117±2.0 cm ' for 

Av+(v^=15). The Av+(v*=2) value is in excellent accord with the literature value cf 121.87 

cm '.^ The comparison of the BOS simulated (sohd line) and experimental (solid circles) 

PFI-PE band for CO'^(A^ni,„ v*=38) is shown in Fig. 2(b). The sum of the simulated spectra 

for CO'^(X^2*, \*=31) shown in Fig. 2(a) and C0'^(A^n,/2, v^=38) gives the overall simulated 

spectrum (solid line) in Fig. 2(c), which is again in excellent accord with the experimental 

PFI-PE spectrum (solid circles). The value for CO*(A"n3/2,i/2. V^=38) is determined to be 

66.1±3.0 cm'. 

The Av+ values for CO*(A*n,;2« v*=0-41) obtained in the BOS simulation are listed in 

Table H. The plot of the experimental A^^. value versus v^ is shown in Fig. 3. It is interesting 

to note that the Av+ value seems to remain nearly constant until v*=19, which has an IE value 

of 19.6 eV. Then it decreases nearly linearly toward higher v*. Although the Av+ values for 

CO*(A"n3/2,i/2, v*=20, 21, and 23) were not determined in the present experiment due to 

serious overlap with the CO* -I,*) bands, the plot of Fig. 3 seems to reveal a break or a 

change in slope at v*=19-20. This may be indicative of perturbation by other states. 

Figure 4 depicts the PFI-PE spectrum for CO in the region of 18.5-20.7 eV. The 

positions of v* levels for C0'^(X*2^ A'PIj/n 1/2, B^S"^) are marked in the figure. We note the 

overlap of the weak CO*(A*n3/2.i/2. v*=19 and 20) PFI-PE bands with the overwhelmingly 

strong vibrational band for C0*(B^2% v*=0) at 19.80 eV. This observation suggests that the 

break observed for the v* dependence of Av+ may arise from high order interactions between 

the CO*(A-n, v*=19 and 20) and C0*(B"2)'^, v*=0) states. By symmetry, the CO*(A^n) and 

C0*(B"2r) can mix by spin-orbit interaction. 
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Included in Table n are the theoretical values obtained based on the theoretical 

Morse potential and the single-point approach. We have also plotted in Fig. 4 these 

theoretical Av+ values. As shown in Fig. 4, for v*<19 the single-point theoretical predictions 

and the experimental results are in sUghtly better accord than those obtained based on the 

theoretical Morse potential. However, the predictions for v*>19 obtained by the single-point 

approach deviate significantly lower from the experimental values. This discrepancy 

observed at high v^ is expected and can be attributed to the increasing anharmonicity of the 

CO'^(A^n) potential at high v*. That is, the <t^ values calculated using the approximation of 

Eq. (1) are not valid at high v*** levels, yielding significantly smaller values than the actual 

equilibrium bond distances for high v^ levels. The theoretical predictions obtained using the 

theoretical Morse potential show the correct overall v* dependence for Av+. The theoretical 

Av+ value varies smoothly over the whole v^ range. Contrary to the experimental 

observation, the v* dependence for the theoretical Av+ values shows no break at v*= 19-20. 

We find that all theoretical Av+ values obtained based on the theoretical Morse 

potential are slightly lower than the corresponding experimental values. Upon comparing the 

theoretical and experimental Morse potentials, we find that the ab initio value is larger 

than the experiment value. Furthermore, the outer wall of the ab initio Morse potential is 

softer than that of the experimental Morse potential. That is, at the same energy, the outer 

turning point for the ab initio Morse potential lies at a larger R than that for the experimental 

Morse potential. As a result, the theoretical Morse potential predicts a larger value for the 

average equilibrium distance for a given v* than that of the experimental Morse potential. 

This analysis indicates that the lower theoretical predictions compared to the experimental 

results can be partly ascribed to finite inaccuracy of the ab initio Morse potential. 
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The theoretical predictions obtained here based on the single-point approach and 

the ab initio Morse potential arc listed in Table I for comparison with the experimental 

values for O2 (^Tl^a,\nv v*=0-38). The latter values have been reported recently by Song et 

al}^ Similar to the comparison of the CO*(A"n) system, the single-point predictions are 

slightly closer to the experimental results at low v^ (<19). However, contrary to the 

experimental observation, the slope for the single-point Av+ prediction versus v+ plot remains 

nearly constant over the entire range of v*=:0-38. That is, the single-point predictions are 

significantly higher than the corresponding experimental values at higher v^ (>21) levels. 

This observation can also be attributed to the inaccuracy of using Eq. (1) for the prediction of 

<re> values at high v*-levels. 

The trend of the dependence for the theoretical Av+ value obtained using the ab 

initio Morse potential is consistent with the experimental data. Although the theoretical 

predictions based on the ab initio Morse potential and experimental A^^ values are in general 

agreement, all theoretical predictions are slightly lower than the corresponding experimental 

results. The comparison of the ab initio and experimental Morse potentials are similar to the 

situation of the CO^(A-n) system. That is, the outer wall of the theoretical Morse potential is 

shifted to the longer range compared to that of the experimental Morse potential. Thus, this 

partly contributes to the lower calculated Av^ values. 

The Av+ values for 02^(X*n3y2,i/2g, v*=20) determined in both the synchrotron based 

PFI-PE" and VUV laser^" PFI-PE studies are higher than the Av+ values for the adjacent 

v*=19 and 20 states. Thus, the variation of Av+ versus y* is most likely not a smooth 

function. We note this kink observed at 02*(X^n3Q,i/2g. v^=20) with an IE =15.96 eV is also 
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close to the beginning of the vibrational progression of the Oi^Ca^Ou) state beginning at 

=16.10 eV. The latter PFI-PE band is nearly in total overlap with the v*=21) 

state. The Av+ values for v*=37 and 38), which have the lEs =17.9-18.0 eV, 

also seem to deviate from the general trend of the Av+ versus v* curve. This observation may 

be correlated to the appearance of the vibrational progression for the 02^(b''2g ) state at 18.1 

eV. On the basis of this observation, we tentatively attribute this kink at 02^(X^n3/2.i/2g, 

v*=20) and 02'^(X^n3/2,i/2g, v^=37-38) as due to perturbation by the Oj^Ca^Ilu) and Oi'^C^Sg ) 

states, respectively. This speculation requires theoretical confirmations in the future. 

The effect of core excitations is noticeable mostly at large distances near the dissociation 

limit where the core excitations become essential to obtain a good energy curve. The Morse 

potential parameters are noticeably better for O,* where the excitations have been included. The 

inclusion of other low lying states (CO*) , most noticeably, gives an opportunity to 

theoretically verify the experimentally observed features in spin-orbit splitting. Since the Morse 

potential approach is based upon the single state results, it displays a smooth dependence 

without any jumps. The single point approach, on the other hand, allows one to study the effect 

of other states. The calculated jump in spin-orbit splitting at v*=24 is due to interaction with the 

X^ST state. To be consistent with the rest of calculations we choose to optimze orbitals only for 

the A'll state and use these orbitals to obtain the wavefiinction for the other state. This causes a 

somewhat overestimated jump in the splitting. 

4. Conclusions 

We have obtained accurate Av+ constants for CO*(A^ni/2,i/2i v*=0-41) in a rotationally 

resolved PFI-PE experiment. A break at CO*(A^3/2,i/2» v*=19-20) was observed in the plot of 



www.manaraa.com

97 

Av+ versus v^ Such a feature is tentatively interpreted as due to perturbation of the CO*(B^Z*) 

state. We have also identified similar features in the v"^ dependence of values for 

v*=0-38), suggesting perturbation from the Oj^CA^Ilu) and Oj^Cb^'S g) states. 

We have also developed a new ab initio computational code for reliable spin-orbit 

coupling calculations. The Av+ predictions for CO*(A^n3/2.i/2. v*=0-41) and ,/2g, 

v^=0-38) obtained using this computation routine are found to be in agreement with 

experimental meausrments.'^ 

The systematic underestimation of the theoretical values for the splitting relative to the 

experimental values is attributed to two factors of the same order of importance: the first order 

perturbative treatment of spin-orbit coupling and the complete omission of the spin-spin 

coupling. To assessthe effect of a larger Q expansion upon the spin-orbit coupling we have 

performed spin-orbit coupling calculations with single excitations from the CAS into the virtual 

space at equilibrium, near the dissociation limit and at a middle point. The splitting decreased by 

about 4cm'' except for the dissociation limit where the change was 8cm''. Single and double 

excitations are several million in number and are not possible computationally unless some kind 

of contraction scheme is employed. 
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Table I. Parameters" for the Morse potential [Eq. (2)] for CO*(A^n) and obtained 

by fitting the ab initio potential energies and experimental vibrational energies for 

COWn3/2)-

Morse Potential Re (A) A (A-') De (cm') (l)e^ (cm ') tOeV (cm') 

Expt. co^cA-n,^" 1.2444 2.3531 45147 1567.5 13.61 

Expt. CO^CA'n.^)" 1.2444 2.3579 45006 1568.3 13.66 

Expt. co*(A-n)= 1.2436 2.345 45115 1562.1 13.52 

Theo CO(A W 1.2510 2.2585 45542 1511.1 12.53 

Expt. OoXX-n)' 1.1200 2.8343 54392 1919.1 16.93 

Expt. 02*(x'n)= 1.1227 2.8008 53250 1876.4 16.53 

Theo Oj^CX-n)" 1.1249 2.7915 55541 1910.0 16.42 

a) Re is the equilibrium bond distance for CO^(A^, v*=0) and Dg = well depth, (0^* = 

vibrational frequency, and (Oe^Xe* = anharmonicity for the Morse potential. 

b) Morse potential based on experimental vibrational energies of this work. 

c) Morse potential based on vibrational constants cited in Ref. 3. 

d) Morse potential based on ab initio potential energies calculated in this work. 

e) Morse potential based on experimental vibrational energies of Ref. 13. 
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Table n. Comparison of the experimental and theoretical spin-orbit constants (cm ')] 

for v*=0-41) and 02^(X^3^,Qg, v*=0-38). 

A  r c m ' ^  
V* ExDtrCO^fA^m? TheorCO^fA=tT^l ExDtrO,Wmi=> TheorO^YX-mi" 
0 120.2 115.7(116.0) 2002 195.0(195.1) 
1 121.0 115.6(116.0) 199.5 194.4 (194.8) 
2 120.2 115.5(116.0) 199.0 193.7 (194.5) 
3 120.2 115.4(115.9) 19&5 193.0 (194.2) 
4 121.0 115.3(115.8) 197.6 1922 (193.9) 
5 122.6 115.2 (115.8) 19&0 191.4 (193.7) 
6 120.2 115.1(115.8) 196.6 190.6 193.2) 
7 120.2 114.9 (115.7) 195.0 189.7 (192.8) 
8 120.2 114.7(115.7) 193.1 188.8 (192.4) 
9 119.4 114.5 (115.6) 192.5 187.8 (192.0) 
10 116.1 114.2(115.6) 1922 186.8 (191.6) 
11 120.2 113.9(115.5) 191.0 185.8 (191.4) 
12 119.4 113.5(115.5) 190.0 184.7 (190.7) 
13 117.0 113.1(115.4) 189.4 183.5 (190.3) 
14 119.4 112.6 (115.4) i8ao 182.3 (189.8) 
15 117.0 112.0(115.3) 187.0 181.0(189.3) 
16 117.0 111.3 (115.3) 185.0 179.8 (188.7) 
17 117.0 110.5(115.2) IS35 178.4(188.2) 
18 117.0 109.6(115.2) 183.0 177.0 (187.6) 
19 119.4 108.5(115.2) 1793 175.5 (187.0) 
20 — 107.3 1820 173.9 (186.3) 
21 — 105.8 177.0 172.3 (185.3) 
22 109.7 104.2(116.5) 174.0 170.6 (185.3 
23 — 102.3 173.0 168.9 (184.2) 
24 103.2 100.3 (130.4) 169.0 167.0 (183.1) 
25 101.6 98.0(111.0) 168.0 165.1 (182.2) 
26 99.2 95.5 (111.4) 165.0 163.1 (182.2) 
27 96.0 92.8(111.4) 163.0 161.1 (181.4) 
28 94.4 90.0(111.2) 161.0 159.0 (180.4) 
29 91.1 86.9(110.9) 159.0 156.7 (179.5) 
30 88.7 83.8(110.6) 155.0 154.4 (179.0) 
31 85.5 80.6 C108.9) 155.0 152.0 177.4) 
32 83.1 77.4 (108.7) 1500 149.5 (175.6) 
33 81.5 74.2 (107.6) 147.0 147.0 (174.4) 
34 77.4 71.0 fl06.7) 14dO 144.3 fl73.0) 
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Table 11. (continued) 

35 
36 
37 
38 
39 
40 
41 

74.2 
70.2 
67.8 
66.1 

59 
57 

67.9 (105.9) 
64.9 (105.0) 
61.9 (103.7) 
59.1 (102.2) 

53.7 (96.0) 
51.2 (92.8) 

56.4 

144.0 
141.0 
1420 
141.0 

141.5 (173.7) 
138.6(171.6) 
135.7 (173.0) 
132.6 (169.3) 

a) This work. Experimental Av+ values for CO*(A'n3^,/2, v*=0-41). 

b) This work. Theoretical values for C0*(A^3^iq, v*=0-41) or 02*(X*n3^,Qg, v*=0-

38). calculated using the ab initio Morse potential. Values in parenteses are obtained by 

the single-point approach based on the <rp> value calculated using Eq. (1). 

c) Reference 13. Experimental values for 02'^(X-n3/2.i/2)-
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Figure Captions 

Figure 1. Comparison of the experimental (solid circles) and BOS simulated (solid line) 

PFI-PE spectra for (a) CO''(A^n3/2.i/2> ^*=2) and (b) COXA-nj^j,!/!. v*=15). 

Positions for individual rotational are indicated using down pointing and up 

pointing stick marks for the *113^ and ^n,/2 components, respectively. The 

rotational branches are labeled as M, N, O. P, Q, R, S, T, and U for AAT = -4, -3, 

-2, -1,0,1,2, 3, and 4, respectively. In each case shown, the position of 

the first and second transitions are indicated by progressively shorter lines. 

The PFI-PE resolution achieved = 4 cm ' (FWHM). 

Figure 2. Composite simulation spectra for C0'^(X^2^, v^=37) and CO*(A"n, v*=38). 

The figure is divided into three panels. Panel (i) [(ii)] compares the 

experimental PFI-PE spectrum (solid circles) and the deconvoluted (solid line) 

PH-PE spectrum for CO*(X22\ v*=37) [C01A-n3;2.,/2, v*=38)]. Panel (iii) 

compares the experimental (solid circles) PFI-PE spectrum with the sum of 

the deconvoluted (solid line) spectra for CO*(X"Z^, v*=37) and 

CO*(A*n3/2.iy2> v*=38). In panel (i), positions for individual rotational 

transitions are indicated by down pointing stick marks. In panel (ii), positions 

for individual rotational transitions are indicated using down pointing and up 

pointing stick marks for the and ^FIi/j components, respectively. The 

numbers in panels (i) and (ii) are N" values. The rotational branches are labeled 

as M, N, O. P, Q, R, S, T, and U for AiV = -4, -3, -2, -1,0,1,2,3, and 4, 

respectively. The PFI-PE resolution achieved = 4 cm ' (FWHM). 
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Figure 3. Plot of the experimental and theoretical spin-orbit splitting constants (Av+) for 

CO^CA'ITv, 1/2) versus v* in the range of v*=0-41. Experimental values arc in 

solid circles. The theoretical values obtained using the ab initio Morse 

pometial and by the single-point approach are shown as open circles and 

triangles, respectively. 

Figure 4. PFI-PE spectrum for CO in the energy region of 18.5-20.7 eV. The positions of 

V* levels for CO*(X^S^ A^n3/2.i/2> ) are marked in the figure. Note that the 

oberlap of the weak COXA^Oj/i,/,, v^=19 and 20) PFI-PE bands with the 

overwhelmingly strong vibrational band for the CO*(B*S^ at 19.80 eV. 

Figure 5. Plot of the experimental and theoretical spin-orbit splitting constants (Av+) for 

02*(A"n3/2.i/2) versus v^ in the range of v'^=0-38. Experimental values are in 

solid circles. The theoretical values obtained using the ab initio Morse 

potential and by the single-point approach are shown as open circles and 

triangles, respectively. 
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CHAPTER vn. A THEORETICAL STUDY OF THE REACTION OF Ti+ 

WITH ETHANE 

A paper to be submitted to J. Phys. Chem. 

Jerzy Moc, Dmitri G. Fedorov and Mark S. Gordon 

Abstract 

Botli the doublet and quartet potential energy surfaces for the Ti"^ + ^2^6 —^ 

TiCjH^"^ + H2 and Ti"^ + ^2^6 —^ TiCH2'^ + CH4 reactions are studied using density 

functional theory (DFT) with the B3LYP functional and ab initio CCSD(T) methods with high 

quality basis sets. Structures have been optimized at the DFT level and the minima connected to 

each TS by following the intrinsic reaction coordinate (IRC). Relative energies are calculated 

both at the DFT and Coupled Cluster levels of theory. 

I. INTRODUCTION 

Experimental studies of gas-phase reactions of the Hrst-row transition-metal cations 

with simple alkanes provide valuable insight into the mechanism and energetics of C-H and C-

C bond activation.' Insertion of the metal into C-H and/or C-C bonds is common and 

eventually leads to the elimination of H2 or small alkanes.^ In particular, several studies of Ti^ 

reacting with ethane in the gas phase were conducted during the last 15 years using various 

mass spectrometric and ion beam techniques.^"® In the early experiment by the Preiser group,-

an ion cyclotron resonance (ICR) method was used. Under single-collision conditions, only 

the C-H insertion leading to the H2 elimination products, TiCjH^"^ + H2, was observed^. 

Weisshaar and co-workers^ employed a flow tube reactor technique to study the gas phase 
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reaction of Ti"*" with CjHg. In the multiple-collision environment of the flow reactor containing 

He buffer gas, the primary products found by these researchers were the adduct ions TiCjHg"'" 

and elimination products TiC2H4''' + H2, with the product distribution at 300K determined to be 

0.55 and 0.45, respectively.^ Tolbert and Beauchamp,'^ who used an ion beam method 

observed at a relative kinetic energy of 0.5 eV (11.5 kcal/mol) both the major elimination 

products TiCjH^^ + Hj and minor double elimination products, TiC2H2^ + 2H2, with a 

product distribution of 0.96 and 0.04, respectively. Based on the Ti"^ reactions with partially 

deuterated ethane, CH3CD3, Tolbert and Beauchamp suggested a 1,2-elimination mechanism 

for the dehydrogenation.^ In the experiment of Sunderlin and Armentrout,^ a guided-ion beam 

tandem mass spectrometer was used to examine the Ti"^ + CjHg reaction, with the applied 

kinetic energies ranging from thermal to several eV. Six products were observed by these 

workers, with the H2 elimination products indicated to be dominant at low energies.^ The most 

recent experimental study on the gas-phase reaction of Ti"*" with ethane at thermal energies was 

conducted by Castleman group^ using the flow tube reactor technique. Consistent with the 

findings of Weisshaar,^ the primary products observed by Castleman® under multiple-collision 

conditions were the adduct ions TiC2Hg'*" and elimination products TiC2H4''" + H2, followed by 

the minor double elimination products TiCjHj"^ + 2H2, with the product distribution 

determined as 0.30,0.66 and 0.04, respectively. 

In the present theoretical study, DFT and ab initio type calculations were carried out for 

the Ti"^ + C2Hg —> TiC2H^'^ + H2 and Ti"*" + C2Hg —TiCH2'*' + CH^ elimination 

reactions. The details of the potential energy surfaces (PES) involved were elucidated and the 

following particular issues were addressed: 

(1) What is the actual structure of the adduct ions observed^'® in the flow tube experiments? 

(2) Why were only the H2 elimination products observed at low energies,^"® whereas the CH^ 

elimination products were not? 
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(3) Is the H2 elimination reaction of 1,1- or 1,2-type? 

(4) How important are spin-orbit effects on the Ti"^ + CjHg reaction? 

II. COMPUTATIONAL METHODS 

Structures were optimized at the density functional theory (DFT) level^-®-^^, using the 

hybrid B3LYP'"'' functional of the form: 

(l-A)F^Slater ^ ̂  p^HF + g p^Becke + q p^LYP + (l-OF^,™ 

where is the Slater exchange, is the Hartree-Fock exchange, is the 

gradient part of the exchange functional of Becke,^"'® is the correlation functional of 

Lee, Yang and Parr,'^ is the correlation functional of Vosko, Wilk and Nusair,'^ and 

A, B, C are the coefficients determined by Becke''^° using a fit to experimental heats of 

formation. The DFT force constant matrix was calculated^^ at each stationary point to confirm 

its character (minimum or transition state (TS)) as well as to evaluate zero-point vibrational 

energy (ZPVE) corrections, which were included in all the relative energies. To verify each pair 

of intermediates connected by a TS, the DFT intrinsic reaction coordinate (IRC)*'^-^^ was 

determined.'^ 

The DFT B3LYP calculations employed the all-electron valence triple-^ plus 

polarization (TZVP) basis set. For Ti, it consisted of the [10s6p] contraction of the (14s9p) 

primitive set developed by Wachters'® combined with the [3d] contraction of the (6d) primitive 

set taken from Rappd et al. Wachters' sp basis was modified by replacing the most diffuse s 

function with one spanning the 3s-4s region (0^=0.209) and by adding two sets of p functions 

(ap=0.156 and 0.0611).'® For C, the TZVP basis was composed of Dunning's'' [5s3p] 

contraction of Huzinaga's (10s6p) primitive set,^° augmented by a set of d polarization 

functions (ol^=0J2). Sinoilarly, for H, the [3s] basis derived'® from the (5s) primitive set,^° 

and augmented by a set of p polarization functions (ttp^^LO) was used as TZVP. 
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The DFT B3LYP relative energies are compared with those determined by the coupled-

cluster singles and doubles method including a perturbative estimate of triples (labeled 

CCSD(T)).^^ The large basis set denoted 6-311+G(2d,2p) in GAUSSIAN 94-^® was used in 

the CCSD(T) calculations. For Ti, this basis consists of the [9s5p3d] contraction of Wachters 

(14s9p5d) primitive set, supplemented with one diffuse s (a^=0.01),^^ two sets of diffuse p 

(cXp=0.1016 and 0.0340)'® and one set of diffuse d functions (ajj=0.072)^'^ as well as two sets 

of f polarization functions (af=1.38 and 0.345).^^®-^^ 

The relevant parts of the potential energy surface were studied with CASSCF 

wavefunctions and the final energetics were obtained at the MCQDPT2 level of theory. The 

active space always included all 6 valence 4s3d orbitals on Ti and the relevant C-H bonds in the 

pairs of bonding/antibonding orbitals. 

Since the potential energy surfaces of quartet and doublet appear to cross, and this 

crossing can affect the kinetics dramatically, the non-adiabatic coupling potential at the crossing 

(spin-orbit coupling) was studied. The spin-orbit coupling was calculated with the TZV basis 

set augmented with one f-polarization function for Ti and full Pauli-Breit Hamiltonian^' using 

GAMESS (for CASSCF wavefunctions). Non-orthogonal orbitals are used throughout; that 

is, the active orbitals are optimised for each multiplicity separately, but common core orbitals 

are used for both. 

Three slightly different approaches were taken to locate the crossing of the doublet and 

quartet surfaces. 

1) follow the doublet IRC and calculate quartet energies for the corresponding doublet 

geometries at the IRC points. 

2) follow the quartet IRC and calculate the doublet energies at these IRC points. 

3) average the internal coordinates for the doublet and quartet IRC point near the crossing. 

Then emulate the IRC by varying the C-H bond distance, which is broken along this path (the 
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imaginary mode of the complex d is mostly along the separation of the two atoms), and 

calculate doublet and quartet energies. This is called averaged IRC. 

III. RESULTS AND DISCUSSION 

A. Reactants and Products 

The ground state of Ti"^ is (4s'3d^) and the lowest doublet state is (4s^3d^), the 

latter lying 13.2 kcal/mol higher in energy than the former.As Table 1 shows, the ^F-^F 

splitting obtained by the MCQDPT2 method based on the multiconfigurational CASSCF (3/6) 

wave function (three active electrons in six active orbitals) compares most favourably with 

experiment. The ^F state of Ti"^ is a three-electron doublet state and is difficult to describe with 

single conHgurational methods due to near degeneracy effects. Nevertheless, the DFT B3LYP 

estimate of the ^F-'^F splitting is within 1 kcal/mol of the experimental result.^® The CCSD(T) 

splitting on the other hand appeared to be unreasonably low due to an overestimation of the 

correlation energy for the ^F state. 

The optimized structure of the second reactant CjHg, as well as those corresponding to 

the dehydrogenation and demethanation products of CjHg by Ti"^, TiC2H4'^ + Hj and TiCHj"^ 

+ CH4, respectively, are depicted in Fig. 1. As expected,DFT B3LYP reproduces the 

geometrical parameters of CjHg, CH^ and H2 very well. For the H2 elimination product, 

TiCjH^"^, DFT predicts the quartet (^Bj) to be the ground state separated from the lowest 

doublet state (^Aj) by 1.8 kcal/mol, while the CCSD(T) order is reversed with the ^A, 

becoming the ground state, lying however only 0.2 kcal/mol below the ^B,. Sodupe et al^^ 

predicted the ^Aj ground state for TiCjH^"^ with the high-spin state "^B, being 5.2 kcal/mol less 

stable. These authors optimized their structures at the SCF level and calulated energies using 

the modified coupled-pair functional (MCPF) method.^^ For the the ^Aj state, our DFT 

structure of TiCjH^"^ (Fig. lb) is similar to that of Sodupe et al.^^ In particular, we also predict 
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a relatively short Ti'''-C2H^ distance and a significant H bend angle. For the j state, a major 

difference between the present DFT geometry and the SCF one^^ is a much shorter Ti'^-CjH^ 

distance of 2.287 A in the former (Fig. lb) as compared to 2.82 A in the latter. The DFT 

structure of the state of TiCjH^"*" is supported by our additional geometry optimization 

using the coupled-cluster doubles (CCD)^^ approach yielding, respectively, 2.347 A and 9.9° 

for the Ti^'^-Cjli^ distance and H bend angle. Apparently, dynamic correlation implicit to some 

degree in DFT B3LYP and explicit in CCSD(T) shortens markedly the Ti'^-CjH^ interaction 

distance for the quartet state relative to the SCF finding. 

The CH^ elimination product, TiCH2'^, was studied previously at both ab initio and 

DFT levels.The most recent DFT B3LYP work by Ricca and Bauschlicher'^® revealed that 

the Cjy structure of TiCHj^ distorts to as the latter symmetry allows donation from one of 

the C-H bonds to Uie empty Ti 3d orbital. Our DFT B3LYP geometry of TiCHj"^ in its lowest 

^A' state (Fig. Ic) agrees well with that of Ricca and Bauschlicher.^^^ The TiCH2'^ lowest 

q u a r t e t  s t a t e ,  ' ^ A "  ( F i g .  I c )  ( n o t  r e p o r t e d  i n  R e f .  3 3 a )  i s  f o u n d  h e r e  t o  h a v e  n e a r l y  C j y  

symmetry and lie 8.4 and 8.6 kcal/mol above ^A' at the DFT B3LYP and CCSD(T) levels, 

respectively. 

B. Initial Complexes 

An electrostatically bound complex Ti'^--C2Hg was proposed^ as one candidate for the 

observed^'® TiC2Hg^ adduct ions. The computed stiiictures for such complexes formed in the 

first step of the reaction between Ti*^ and are denoted al and a2 in Fig. 2 and a in Figs. 

3 (doublet) and 4 (quartet), and are shown in both doublet and quartet states. Structure al 

corresponds to an end-on approach of Ti*^ toward C2Hg, while a and a2 correspond to a side-

on approach. Only stiiictures a and al involving coordination appeared to be minima on 

both surfaces, while coordinated structure a2 of C2 symmetry produced one imaginary 
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frequency with the eigenvector clearly indicating distortion to As Ti"^ has a quartet ground 

state, so have the electrostatic complexes a and al (*A"). Complex a C*A") is bound by 20.1 

and 15.6 kcal/mol relative to the -i- Ti'*"( '^F) reactants at the DFT B3LYP and CCSD(T) 

levels, respectively. The corresponding binding energies obtained for the complex al are 18.7 

and 14.9 kcal/mol, respectively. On the the doublet surface, complexes a and al are bound by 

20.5 and 20.1 kcal/mol with respect to CjHg + Ti'^C ^F) at the DFT B3LYP level. As CCSD(T) 

breaks down for the doublet state of Ti^, no reliable binding energies could be obtained at this 

level for the doublet a and al. However, based on the results for the quartet surface, one may 

predict that the DFT doublet binding energies are also a few kcal/mol too large. 

Starting from the Ti"*"--€211^ complex, metal insertion into a C-H or C-C bond can be 

considered as the next reaction step. The C-H insertion described below starts from the 

complex a. Initially we also explored this important step as eventually leading to the observed 

H2 elimination products beginning with both the a and al complexes (on the doublet surface, 

see below). The energy of the C-H insertion TS connecting complex al with the 

corresponding product was 0.5 kcal/mol lower than the energy of the TS connecting complex 

a, but the former TS leads to an energetically less favorable product, by ca. 10 kcal/mol at the 

DFT B3LYP level. Therefore, we did not pursue the "al path" further. 

The complete reaction paths for the H2 and CH^ eliminations will be discussed next. 

Figs. 3 and 4 summarize all of the calculated structures for the doublet and quartet states, 

respectively. The energies relevant to the H2 and CH^ eliminations are collected in Tables 2 and 

3, and the corresponding energy profiles are depicted in Fig. 5 and Fig. 6, respectively. For 

each species the energy given is relative to the ground-state reactants CjHg + ^F) and 

includes the ZPVE correction. The structure labels in Tables 2 and 3 and Figs. 5 and 6 

correspond to those used in Figs. 3 and 4. 
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C. H2 elimination path 

The C-H insertion step in the H2 elimination reaction involves breaking a C-H bond in 

a and forming the insertion product e, HTiCjHj"^ (oxidative addition), shown in Figures 3 and 

4. On the doublet surface, the B3LYP energy of e (Cj symmetry) decreases by 4.8 kcal/mol 

relative to the complex a. This structure has a C-Ti distance of 2.00 A and a nearly 

perpendicular C-C-Ti arrangement. The corresponding C-H insertion TS d is "product-like" 

with only slightly shorter C-Ti bond (Fig. 3). The barrier height at this (adiabatic) doublet TS 

is 5.2 (9.0) kcal/mol at DFT(CCSD(T)) level of theory (Table 2). The MCQDPT2 barrier is 8.0 

kcal/mol. In contrast, on the quartet surface, the energy of e increases with respect to a by 

37.2(37.7) kcal/mol at the DFT (CCSD(T)) level. Since the quartet C-H insertion TS d is 

obviously shifted even higher in energy, a crossing occurs between the quartet and doublet 

surfaces in this region (cf. Fig. 5). This implies that the reaction will subsequently proceed on 

the doublet surface if the surface coupling potential is sufHciently large. The crossing 

apparently precedes (Figures 5a and 5c) the doublet C-H insertion TS d which determines the 

actual insertion barrier. In the next step on the doublet surface, the Ti-H bond in the C-H 

insertion product e rotates via TS f to the rotamer g, the latter having a planar structure (^A") 

with a slightly longer C-Ti bond than that in e (Fig. 3). All levels of theory agree that after 

accounting for the ZPVE correction, the rotation TS f becomes lower in energy than g, so that 

the rotamer may not correspond to a genuine minimum (Fig. 5), and the TS f may be 

irrelevant. Both DFT (Figure 5a) and MCQDPT2 (Figure 5c) find that f and g lie well below 

the CjHg + Ti"^( '^F) reactants, whereas CCSD(T) locates the two species slightly above this 

asymptote. All methods predict e to be below the asymptote. 

On the quartet surface (Fig. 5) all species between a and g lie well above the C2Hg + Ti"^ 

C^F) asymptote. Unlike the doublet, the quartet Ti"^ apparently cannot form stable insertion 

products. For instance, after forming an H-Ti bond in the quartet structure e, by singlet 
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coupling by a pair of electrons, the missing spin contribution is "borrowed" from the 

neighbouring C atom to conserve the quartet character. This is confirmed by the calculated spin 

density distribution in the quartet e of ca. 2.2 and 0.8 on the Ti and neighbouring C atoms, 

respectively. The quartet structures show correspondingly much weaker C-Ti bonds with the 

distances longer by ca. 0.4 A as compared to the doublet counterparts (cf. Figs. 3 and 4). 

In the next step on the doublet surface, the HTiCjHj"^ rotamer g can undergo 

reductive elimination via the planar H2 elimination TS j to form the molecular complex 

TiC2H4'^ "H2(k) (Fig. 3). The latter (2A") intermediate has the unit rotated in the C-C-

Ti symmetry plane. Also, it exhibits asymmetrically lengthened Ti-C bonds and a shortened C-

C bond relative to the TiC2H4^(^A,) product. These structural changes are indicative of the 

weakening of the Ti'^-CjH^ interaction within the molecular complex k in the doublet state as 

c o m p a r e d  t o  T i C 2 H 4 ' ' " ( ^ A j ) .  T h e  D F T  C j y  T i C 2 H 4 ' ' "  " H 2  s t r u c t u r e  w i t h  t h e  H 2  u n i t  

perpendicular to the C-C-Ti plane is 1.4 kcal/mol higher in energy and has two imaginary 

frequencies. The corresponding normal mode eigenvectors indicate distortions leading to k. 

For the reductive elimination step DFT B3LYP predicts a barrier of 1.5 kcal/mol above the 

C2Hg + Ti'^( ^F) reactants with the resulting complex k located 1.8 kcal/mol below this 

asymptote. According to CCSD(T), the reductive elimination step must conquer a higher 

barrier of 9.5 kcal/mol above + Ti'^C '^F) (comparable to the CCSD(T) C-H insertion 

barrier), and the complex k is located 6.2 kcal/mol above this asymptote (Fig. 5). The 

MCQDPT2 surface is more similar to the DFT result, since it predicts that all points after the 

insertion step d are below the asymptote. 

On the quartet surface, the electrostatic complex TiC2H^'^ "H2 k is a very stable 

structure, well below the asymptote according to both DFT and MCQDPT2. The quartet k has 

C2V symmetry C^A2) with the H2 unit perpendicular to the C-C-Ti plane (Fig. 4).^^ Since the 

C-Ti and C-C distances in quartet k and the TiC2H4'^C^Bj) product (Fig. 1) are nearly the 
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same, the weakening of the Ti'^-CjH^ interaction within the quartet complex k relative to 

TiC2H4'*'('*B,) should be smaller than that in the doublet case discussed above. Indeed, all 

levels of theory predict that the molecular complex k in the quartet state is lower in energy than 

the doublet counterpart. The DFT quartet k is 6.8 kcal/mol below CjHg + Ti^( '^F), whereas 

the CCSD(T) energy at this point is 3.1 kcal/mol above this asymptote. As a result, another 

spin crossing occurs in this region and the elimination proceeds back to the original 

(quartet) surface (Fig. 5). 

In the final step the Hj molecule is eliminated yielding the TiCjH^"^ product. According 

to DFT, the latter is left in the quartet state at a net cost of 5.2 kcal/mol, and the overall 

elimination reaction starting with the CjHg + Ti''"C^F) reactants is slightly exothermic, by 1.2 

kcal/mol (Figure 5a). The CCSD(T) calculations predict that TiC2H^'^ is left in the doublet state 

and the overall H2 elimination reaction is slightly endothermic, by 7.5 kcal/mol (Fig. 5b). The 

MCQDPT2 calculations are in qualitative agreement with CCSD(T), since this method predicts 

a doublet final product with a net cost of less than 8.0 kcal/mol and essentially a thermoneutral 

reaction. 

D. CH^ elimination path 

Both H2 and CH^ elimination paths stem firom the complex a. Moreover, on the doublet 

surface, the C-H insertion step is common for the two paths (Fig. 6). In the next step on that 

surface, the HTiC2H5'^ intermediate e can be transformed to the Ti(CH3)2'^ dimethyl cation c 

via the four-center TS b (Fig. 3). The latter TS leads from the C-H insertion product to the C-C 

insertion product and features partially broken C-C and C-H bonds. The optimal structure of 

Ti(CH3)2^ c is bent and has C^ symmetry (^A') with the two methyls eclipsed and the two in-

plane hydrogens nearer each other than the four out-of-plane hydrogens (Fig. 3). A DFT C2V 

structure with the same orientation of the methyls was found to be 0.04 kcal/mol higher in 
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energy and showed a small imaginary frequency with the eigenvector indicating rotation of 

both methyls in the same direction. The barrier is predicted to be 16.7 (25.0) kcal/moi above 

the CjHg + Ti'^( ^F) reactants at the DFT (CCSD(T)). DFT predicts that the ^A' state is the 

global minimum, lying 22.1 kcal/mol below CjHg + Ti'*'( *F) and 2 kcal/mol below quartet a. 

In comparison, the CCSD(T) ^A' c is 11.6 kcal/mol below CjHg + Ti'*"( '^F) and 4 kcal/mol 

above quartet a (Fig. 6). A "direct" C-C insertion TS from the complex a to the dimethyl 

species c was also found. However, because this DFT TS is strongly spin contaminated, this 

part was not pursued. 

Insertion of Ti"*" in the quartet state into the C-C bond is not thermodynamically favorable 

as discussed earlier for the C-H insertion. The dimethyl species c on the quartet surface is 31 

and 34 kcal/mol above complex a at the DFT and CCSD(T) levels, respectively. Consequently, 

a surface crossing occurs similar to that found for the elimination. Assuming significant 

spin-orbit coupling, the reaction moves to the doublet surface and remains there as the quartet 

surface is shifted to much higher energies (cf. Fig. 6). Despite a very careful search we failed 

to locate the quartet C-C insertion TS. This TS (if it exists) is assumed to lie not lower than 

11.0 kcal/mol (DFT) or 18.3 kcal/mol (CCSD(T)) above CjHg + Ti+( 

The next step on the doublet surface is 1,3 hydrogen migration leading to the molecular 

complex TiCH2'^ "CH4(i) (Fig. 3). The complex i is found to lie 3.4 kcal/mol below and 1.9 

kcalmol above CjHg + Ti^( "^F) at DFT and CCSD(T), respectively. In order to reach i, TS h 

located respectively 8.1 and IS.l kcal/mol above the same asymptote has to be passed. 

Complex i involves coordinated CH4 and was obtained by following the IRC. The 

"asynmietrical" TiCI^"*" product already formed within i can be easily recognized (cf. Figs. Ic 

and 3). The DFT C^ symmetry coordinated structure of TiCH2''" "CH4 is ca. 3 kcal/mol less 

stable and has one imaginary frequency with the eigenvector showing distortion to Cj. The 

Anal step for this mechanism is a release of a CH^ molecule at the cost of 14.4 and 15.1 
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kcal/mol, at the DFT and CCSD(T) levels, respectively. The overall CH^ elimination reaction 

starting with the + Ti^(^F) reactants is found to be endothermic by 11.0 and 17.0 

kcal/mol, respectively. 

Although once the complex a is formed, the quartet surface is not involved in the CH4 

elimination reaction, this path and the relevant structures are included for comparison purposes. 

The quartet Ti(CH3)2''" species c exhibits a symmetry breaking as evident by the inequivalent 

Ti-C bonds (Fig. 4).^® The quartet complex i is 9.4 (DFT) or 10.8 kcal/mol (CCSD(T)) less 

stable than the doublet analogue, which corresponds roughly to the doublet-quartet splitting for 

the TiCHj^ product discussed above. 

E. Spin-orbit coupling 

For all of the three approaches described in Section n and pictured on Figures 7-9 the 

spin-orbit coupling constant (defined as the square root of the sum of squares of the absolute 

values of matrix elements) is found to be essentially the same at the crossing point that 

occurs along the reaction path from complex a to d and the value of C=S0-S5 cm'' was 

obtained. The levels at the crossing are given in Figure 10. The value of C=52.5 cm*' was 

normalised by the level degeneracy C^/(2S+1), S=l/2 and used for the square of the diabatic 

potential to estimate the Landau-Zener (Ref 2) transition probability. The probability is plotted 

in Figure 11. The value at room temperature is 13.4%. 

The value of the spin-orbit coupling constant is smaller than can be expected for a 

compound containing an atom as heavy as titanium, however, it is large enough to alter the 

course of the otherwise energy forbidden reaction (at room temperature) to allow a channel of 

the quartet state of the reactants to proceed to the energetically accessible doublet surface. 

Interestingly, another two potential energy crossings appear to occur near the reactants. 

However they do not appear to affect the dynamics to a significant extent due to small energy 
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differences of the two surfaces. 

IV. CONCLUSIONS 

(i) We found that the Ti+ + CjHg —> TiC2H/ + H2 and Ti+ + CjHg —> TiCHj-" 

+ CH4 elimination reactions start with formation of the rf coordinated Ti^—CjHg electrostatic 

complex in the quartet state. Due to instability of the quartet C-H and C-C insertion products 

relative to the doublet counterparts, a spin crossing occurs next and the two reactions proceed 

on the low-spin surface. 

(ii) The overall H2 elimination reaction is calculated to be slightly exothermic by 1.2 

(.3) kcal/mol at the DFT B3LYP (MCQDPT2) level and slightly endothermic (by 7.5 kcal/mol) 

at the CCSD(T) level. The C-H insertion TS (DFT B3LYP) or C-H insertion TS and Hj 

elimination TS (CCSD(T)) are the highest energy points en route to the products, lying 

respectively 5.2, 9.0 and 9.5 kcal/mol above the ground-state reactants CjHg + Ti'^( '^F). For 

the Co"^- and Fe^-mediated elimination of Hj from CjHg studied recently, the C-H insertion 

TS was located below the entrance channel and the H2 loss TS was the rate determining step. 

The higher relative energy of the C-H insertion TS in the Ti"^ case results from the more 

shallow potential well of its initial complex as compared to the Co"^ and Fe"^ analogues. The 

actual depth of this well determines whether insertion barriers lie below or above the entrance 

channel.^® Finally, consistent with the labelling experiments,"* our results suggest the 1,2 Hj 

elimination mechanism. 

(iii) The overall CH^ elimination reaction is predicted to be signiHcantly endothermic, 

by 11.0 and 17.0 kcal/mol at the DFT B3LYP andCCSD(T) levels, respectively. Although the 

C-C insertion product, Ti(CH3)2'^, is a low energy intermediate (the global minimum at DFT 

B3LYP), a high C-C insertion barrier of 16.7 kcal/mol (DFT B3LYP) or 25 kcal/mol 

(CCSD(T)) above C2Hg + 'Ii^( "^F) prevents from observing this species under thermal 
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conditions. Based on the calculated energy profiles we suggest the initial complex Ti"^--CjHg 

in the quartet state to be a likely candidate for the adduct ion stabilized in the flow tube 

experiments.^'^ 
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Table 1. Relative energies (in kcal/mol) of the Ti"*" (^F) and Ti^ (^F) terms 

Method Ti+ (*¥, 3d24s') Ti+ (^F, 3d24si) 

CCSD(T) 0.0 4.0 

CASSCF'*''' 0.0 16.6 

DFTB3LYP 0.0 14.3 

MCQDPT2 0.0 13.6 

Exp.<^ 0.0 13.2 

®The active space corresponds to the Ti 3d and 4s orbitals. 'TTie same 

basis set was used as in the DFT B3LYP calculations. *^ef.27; averaged over 

J states. 
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Table 2. Relative energies for the H2 elimination reaction (in kcal/mol)a 

DFTB3LYP CCSD(T) MCQDPT2 

Ti-^ +C2H6—>TiC2H4^ + H2 

Doublet 

Ti+ + C2H6 14.3 13.6 

Ti+...C2H6(a) -6.2 1.2 

C-H ins. TS (d) 5.2 9.0 8.0 

HTiC2H5+(e) -11.0 -1.7 -10.1 

Ti-H rot. TS (f) -6.9 1.9 -10.1 

HTiC2H5+(g) -6.8 2.1 -8.2 

H2eIim.TSa) 1.5 9.5 -2.2 

TiC2H4+ •H2 (k) -1.8 6.2 -3.6 

TiC2H4+ + H2 0.6 7.5 -.3 

Quaitet 

Ti+ + C2H6 0.0 0.0 0.0 

Ti+-.C2H6(a) -20.1 -15.6 -18.1 

C-H ins. TS (d) 17.3 23.1 17.0 

HTiC2H5+(e) 17.1 22.1 20.4 

Ti-H rot. TS (f) 17.1 21.6 

HTiCjHs+Cg) 16.2 20.6 

H2 elim. TS (J) 21.8 30.9 

TiC2H4+ ••H2(k) -6.8 3.1 -10.4 

TiC2H4+ + H2 -1.2 7.7 2.8 

aAU energies are relative to the Ti+ (^F) + C2H6 ground-state reactants and 
include the 2TVE corrections. 
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Table 3. Relative energies for the CH4 elimination reaction (in kcal/mol)a 

DFT B3LYP CCSD(T) 

Ti+ + CjHfi —> TiCHj^ + CH4 

Doublet 

Ti+ + C2H6 14.3 

Ti+..C2H6(a) -6.2 

C-H ins. TS (d) 5.2 9.0 

HTiC2H5+(e) -11.0 -1.7 

C-C ins. TS (b) 16.7 25.0 

Ti(CH3)2+(c) -22.1 -11.6 

1,3 H shift TS(li) 8.1 15.1 

TiCH2+• CH4(i) -3.4 1.9 

TiCH2++CH4 11.0 17.0 

Quaitet 

Ti+ + C2H6 0.0 0.0 

Ti+.C2H6(a) -20.1 -15.6 

Ti(CH3)2+(c) 11.0 18.3 

1,3 H shift TS(h) 26.9 36.0 

TiCH2+ -CH4(i) 6.0 12.7 

TiCH2+ + CH4 19.4 25.6 

aAll energies are relative to the Ti+ (^F) + C2H6 ground-state reactants 
and include the ZPVE corrections. 
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Captions to Figures 

Figure 1. 

Structures of (a) CjHg reactant, (b) Hj elimination products, and (c) CH4 elimination products 

of CjHg by Ti"^ Cond lengths in A, bond angles in degrees). H bend denotes the out-of-plane 

bending angle of the hydrogen atoms (zero for the isolated C2H4). Values in parentheses are 

from experiment (taken from Ref. 29). 

Figure 2. 

Plausible structures of the electrostatic complex Ti'^ - CjHg formed in the first step of the 

reaction between Ti^ and CjHg (bond lengths in A, bond angle in degrees). 

Figure 3. 

Doublet structures for the reaction between Ti"^ and CjHg (bond lengths in A, bond angles in 

degrees). 

Figure 4. 

Quartet structures for the reaction between Ti"^ and C2Hg (bond lengths in A, bond angles in 

degrees). 

Figure 5. 

The energy profiles for the Ti"^ + Cyig —TiCjH^"^ + Hj reaction calculated at die (a) DFT 

B3LYP and (b) CCSD(T) level. 

Figure 6. 

The energy profiles for the Ti"^ + —> TiCHj"^ + CH^ reaction calculated at the (a) DFT 
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B3LYP and (b) CCSD(T) level. 

Figure 7. 

Energy and SOCC along the doublet IRC from the complex d in the direction of complex a. 

Figure 8. 

Energy and SOCC along the quartet IRC from the complex d in the direction of complex a. 

Figure 9. 

Energy and SOCC along the averaged IRC from the complex d in the direction of complex a. 

Figure 10. 

Energy levels at the crossing (along the averaged IRC), r^.pj=l,698A. 

Figure 11. 

Transition probability at the doublet/quartet crossing. 
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CHAPTER Vm. GENERAL CONCLUSIONS 

The theoretical models discussed in Chapter I have been developed to facilitate 

studies of spin-dependent processes in chemistry. The models have been put into the publicly 

available quantum chemistry package GAMESS in order to provide chemists with a 

convenient tool to study chemical problems without having to resort to solving complicated 

theoretical and programming difficulties. The models developed in Chapter 11 underwent 

laborious testing on a representative set of molecules in order to understand applicability and 

limitations of the developed models. These simple test cases are to serve as guidelines for 

future practical applications. Both theoretical models and the developed symmetry apparatus 

were found to provide satisfying results. The syirunetry benefits discussed in Chapter HI are 

very important from the point of view of a manifold increase in efficiency of the code and 

from the point of view of classification of the results, not an unimportant issue in itself. 

A new mechanism for highly accurate studies of vibrational structure of molecular 

properties was proposed and discussed in Chapter FV. Chapter V summarises some relations 

and provides proofs for equations used in other parts of the thesis. Two chemically 

interesting applications were investigated in Chapter VI and VII, further confirming the 

validity and accuracy of the theoretical models. The future developments may involve 

developing a theoretical model and practical computational tools for studying the dynamics 

of molecular processing involving transitions between potential energy surfaces driven by 

spin-orbit coupling and other diabatic potentials. Undoubtedly a very desirable addition to 

the existing models would be an inclusion of spin-free relativistic corrections so that all-

electron basis sets for transition and heavier main group elements may be used providing 

superior quality results as compared to widely used effective core potentials. These 

corrections would also facilitate the full one and two-electron spin-orbit coupling 
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calculations. The developed vibrational wavefunction mechanism can be used to couple 

vibrational and electronic wavefunction by the spin-orbit coupling potential so that finer 

features revealed from both experiments and simpler theoretical models. It is gratifying to be 

able to theoretically predict finer and finer structure of molecular properties as both 

theoretical models and computational capabilities improve. 

A possible improvement in the future may be the addition of the scalar relativistic 

corrections to the non-relativistic calculations. This would provide a great improvement for 

the use of all-electron basis sets for heavier elements in the periodic table, as an alternative 

for the use of effective core potentials. 
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